|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
import copy |
|
import gc |
|
import inspect |
|
import os |
|
import os.path |
|
import pickle |
|
import random |
|
import re |
|
import tempfile |
|
import warnings |
|
from collections import defaultdict |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
from parameterized import parameterized |
|
from pytest import mark |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSequenceClassification, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
is_torch_available, |
|
logging, |
|
set_seed, |
|
) |
|
from transformers.models.auto import get_values |
|
from transformers.models.auto.modeling_auto import ( |
|
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES, |
|
MODEL_FOR_BACKBONE_MAPPING_NAMES, |
|
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES, |
|
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, |
|
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES, |
|
MODEL_FOR_MASKED_LM_MAPPING_NAMES, |
|
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, |
|
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, |
|
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, |
|
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES, |
|
MODEL_MAPPING_NAMES, |
|
) |
|
from transformers.testing_utils import ( |
|
CaptureLogger, |
|
is_flaky, |
|
is_pt_flax_cross_test, |
|
is_pt_tf_cross_test, |
|
require_accelerate, |
|
require_bitsandbytes, |
|
require_flash_attn, |
|
require_safetensors, |
|
require_torch, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
require_torch_sdpa, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import ( |
|
CONFIG_NAME, |
|
GENERATION_CONFIG_NAME, |
|
SAFE_WEIGHTS_NAME, |
|
is_accelerate_available, |
|
is_flax_available, |
|
is_tf_available, |
|
is_torch_bf16_available_on_device, |
|
is_torch_fp16_available_on_device, |
|
is_torch_fx_available, |
|
is_torch_sdpa_available, |
|
) |
|
from transformers.utils.generic import ContextManagers, ModelOutput |
|
|
|
|
|
if is_accelerate_available(): |
|
from accelerate.utils import compute_module_sizes |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
import torch.nn.functional as F |
|
from safetensors.torch import load_file as safe_load_file |
|
from safetensors.torch import save_file as safe_save_file |
|
from torch import nn |
|
|
|
from transformers import MODEL_MAPPING, AdaptiveEmbedding |
|
from transformers.modeling_utils import load_state_dict, no_init_weights |
|
from transformers.pytorch_utils import id_tensor_storage |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
if is_flax_available(): |
|
import jax.numpy as jnp |
|
|
|
from tests.test_modeling_flax_utils import check_models_equal |
|
from transformers.modeling_flax_pytorch_utils import ( |
|
convert_pytorch_state_dict_to_flax, |
|
load_flax_weights_in_pytorch_model, |
|
) |
|
|
|
if is_torch_fx_available(): |
|
from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace |
|
|
|
|
|
def _config_zero_init(config): |
|
configs_no_init = copy.deepcopy(config) |
|
for key in configs_no_init.__dict__.keys(): |
|
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: |
|
setattr(configs_no_init, key, 1e-10) |
|
if isinstance(getattr(configs_no_init, key, None), PretrainedConfig): |
|
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key)) |
|
setattr(configs_no_init, key, no_init_subconfig) |
|
return configs_no_init |
|
|
|
|
|
def _mock_init_weights(self, module): |
|
for name, param in module.named_parameters(recurse=False): |
|
|
|
value = ord(name[0].lower()) - 110 |
|
param.data.fill_(value) |
|
|
|
|
|
def _mock_all_init_weights(self): |
|
|
|
if self.config.pruned_heads: |
|
self.prune_heads(self.config.pruned_heads) |
|
|
|
import transformers.modeling_utils |
|
|
|
if transformers.modeling_utils._init_weights: |
|
for module in self.modules(): |
|
module._is_hf_initialized = False |
|
|
|
self.apply(self._initialize_weights) |
|
|
|
|
|
|
|
self.tie_weights() |
|
|
|
|
|
@require_torch |
|
class ModelTesterMixin: |
|
model_tester = None |
|
all_model_classes = () |
|
all_generative_model_classes = () |
|
fx_compatible = False |
|
test_torchscript = True |
|
test_pruning = True |
|
test_resize_embeddings = True |
|
test_resize_position_embeddings = False |
|
test_head_masking = True |
|
test_mismatched_shapes = True |
|
test_missing_keys = True |
|
test_model_parallel = False |
|
is_encoder_decoder = False |
|
has_attentions = True |
|
model_split_percents = [0.5, 0.7, 0.9] |
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = copy.deepcopy(inputs_dict) |
|
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): |
|
inputs_dict = { |
|
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() |
|
if isinstance(v, torch.Tensor) and v.ndim > 1 |
|
else v |
|
for k, v in inputs_dict.items() |
|
} |
|
elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES): |
|
inputs_dict.pop("attention_mask") |
|
|
|
if return_labels: |
|
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES): |
|
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) |
|
elif model_class.__name__ in [ |
|
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), |
|
]: |
|
inputs_dict["start_positions"] = torch.zeros( |
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device |
|
) |
|
inputs_dict["end_positions"] = torch.zeros( |
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device |
|
) |
|
elif model_class.__name__ in [ |
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES), |
|
]: |
|
inputs_dict["labels"] = torch.zeros( |
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device |
|
) |
|
elif model_class.__name__ in [ |
|
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES), |
|
]: |
|
inputs_dict["labels"] = torch.zeros( |
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device |
|
) |
|
elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES): |
|
num_patches = self.model_tester.image_size // self.model_tester.patch_size |
|
inputs_dict["bool_masked_pos"] = torch.zeros( |
|
(self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device |
|
) |
|
elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES): |
|
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape |
|
inputs_dict["labels"] = torch.zeros( |
|
[self.model_tester.batch_size, height, width], device=torch_device |
|
).long() |
|
|
|
return inputs_dict |
|
|
|
def test_save_load(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_save_load(out1, out2): |
|
|
|
out_2 = out2.cpu().numpy() |
|
out_2[np.isnan(out_2)] = 0 |
|
|
|
out_1 = out1.cpu().numpy() |
|
out_1[np.isnan(out_1)] = 0 |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
|
|
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) |
|
self.assertEqual( |
|
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) |
|
) |
|
|
|
model = model_class.from_pretrained(tmpdirname) |
|
model.to(torch_device) |
|
with torch.no_grad(): |
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
|
|
if isinstance(first, tuple) and isinstance(second, tuple): |
|
for tensor1, tensor2 in zip(first, second): |
|
check_save_load(tensor1, tensor2) |
|
else: |
|
check_save_load(first, second) |
|
|
|
def test_from_pretrained_no_checkpoint(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
state_dict = model.state_dict() |
|
|
|
new_model = model_class.from_pretrained( |
|
pretrained_model_name_or_path=None, config=config, state_dict=state_dict |
|
) |
|
for p1, p2 in zip(model.parameters(), new_model.parameters()): |
|
self.assertTrue(torch.equal(p1, p2)) |
|
|
|
def test_keep_in_fp32_modules(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
if model_class._keep_in_fp32_modules is None: |
|
return |
|
|
|
model = model_class(config) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16) |
|
|
|
for name, param in model.named_parameters(): |
|
if any(n in model_class._keep_in_fp32_modules for n in name.split(".")): |
|
self.assertTrue(param.dtype == torch.float32) |
|
else: |
|
self.assertTrue(param.dtype == torch.float16, name) |
|
|
|
def test_save_load_keys_to_ignore_on_save(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
_keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None) |
|
if _keys_to_ignore_on_save is None: |
|
continue |
|
|
|
|
|
for k in _keys_to_ignore_on_save: |
|
self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys())) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME) |
|
state_dict_saved = safe_load_file(output_model_file) |
|
|
|
for k in _keys_to_ignore_on_save: |
|
self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys())) |
|
|
|
|
|
load_result = model.load_state_dict(state_dict_saved, strict=False) |
|
keys_to_ignore = set(model._keys_to_ignore_on_save) |
|
|
|
if hasattr(model, "_tied_weights_keys"): |
|
keys_to_ignore.update(set(model._tied_weights_keys)) |
|
|
|
self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore) |
|
self.assertTrue(len(load_result.unexpected_keys) == 0) |
|
|
|
def test_gradient_checkpointing_backward_compatibility(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if not model_class.supports_gradient_checkpointing: |
|
continue |
|
|
|
config.gradient_checkpointing = True |
|
model = model_class(config) |
|
self.assertTrue(model.is_gradient_checkpointing) |
|
|
|
def test_gradient_checkpointing_enable_disable(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if not model_class.supports_gradient_checkpointing: |
|
continue |
|
|
|
|
|
model = model_class(config) |
|
self.assertFalse(model.is_gradient_checkpointing) |
|
|
|
|
|
model.gradient_checkpointing_enable() |
|
self.assertTrue(model.is_gradient_checkpointing) |
|
|
|
|
|
for n, m in model.named_modules(): |
|
if hasattr(m, "gradient_checkpointing"): |
|
self.assertTrue( |
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True" |
|
) |
|
|
|
|
|
model.gradient_checkpointing_disable() |
|
self.assertFalse(model.is_gradient_checkpointing) |
|
|
|
|
|
for n, m in model.named_modules(): |
|
if hasattr(m, "gradient_checkpointing"): |
|
self.assertFalse( |
|
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False" |
|
) |
|
|
|
@is_flaky(description="low likelihood of failure, reason not yet discovered") |
|
def test_save_load_fast_init_from_base(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
if config.__class__ not in MODEL_MAPPING: |
|
return |
|
base_class = MODEL_MAPPING[config.__class__] |
|
|
|
if isinstance(base_class, tuple): |
|
base_class = base_class[0] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
|
|
|
|
class CopyClass(model_class): |
|
pass |
|
|
|
model_class_copy = CopyClass |
|
|
|
|
|
model_class_copy._keys_to_ignore_on_load_missing = [] |
|
|
|
|
|
|
|
model_class_copy._init_weights = _mock_init_weights |
|
model_class_copy.init_weights = _mock_all_init_weights |
|
|
|
model = base_class(config) |
|
state_dict = model.state_dict() |
|
|
|
|
|
|
|
random_key_to_del = random.choice(list(state_dict.keys())) |
|
del state_dict[random_key_to_del] |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) |
|
|
|
model_fast_init = model_class_copy.from_pretrained(tmpdirname) |
|
model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False) |
|
|
|
|
|
for key in model_fast_init.state_dict().keys(): |
|
if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): |
|
max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item() |
|
else: |
|
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
def test_fast_init_context_manager(self): |
|
|
|
class MyClass(PreTrainedModel): |
|
config_class = PretrainedConfig |
|
|
|
def __init__(self, config=None): |
|
super().__init__(config if config is not None else PretrainedConfig()) |
|
self.linear = nn.Linear(10, 10, bias=True) |
|
self.embedding = nn.Embedding(10, 10) |
|
self.std = 1 |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) |
|
if module.bias is not None: |
|
module.bias.data.normal_(mean=0.0, std=self.std) |
|
|
|
|
|
with ContextManagers([no_init_weights(True)]): |
|
no_init_instance = MyClass() |
|
|
|
set_seed(0) |
|
expected_bias = torch.tensor( |
|
([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475]) |
|
) |
|
init_instance = MyClass() |
|
torch.testing.assert_close(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4) |
|
|
|
set_seed(0) |
|
torch.testing.assert_close( |
|
init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5)) |
|
) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
state_dict = init_instance.state_dict() |
|
del state_dict["linear.weight"] |
|
|
|
init_instance.config.save_pretrained(tmpdirname) |
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) |
|
set_seed(0) |
|
model_fast_init = MyClass.from_pretrained(tmpdirname) |
|
|
|
set_seed(0) |
|
model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False) |
|
|
|
for key in model_fast_init.state_dict().keys(): |
|
max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])) |
|
self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical") |
|
|
|
def test_fast_init_tied_embeddings(self): |
|
class MyClass(PreTrainedModel): |
|
config_class = PretrainedConfig |
|
_tied_weights_keys = ["output_embeddings.weight"] |
|
|
|
def __init__(self, config=None): |
|
super().__init__(config if config is not None else PretrainedConfig()) |
|
self.input_embeddings = nn.Embedding(10, 10) |
|
self.output_embeddings = nn.Linear(10, 10, bias=False) |
|
self.tie_weights() |
|
|
|
def get_output_embeddings(self): |
|
return self.output_embeddings |
|
|
|
def set_output_embeddings(self, output_embeddings): |
|
self.output_embeddings = output_embeddings |
|
|
|
def get_input_embeddings(self): |
|
return self.input_embeddings |
|
|
|
def set_input_embeddings(self, input_embeddings): |
|
self.input_embeddings = input_embeddings |
|
|
|
def _init_weights(self, module): |
|
if module is self.output_embeddings: |
|
raise ValueError("unnecessarily initialized tied output embedding!") |
|
|
|
model = MyClass() |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
MyClass.from_pretrained(tmpdirname) |
|
|
|
def test_save_load_fast_init_to_base(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
if config.__class__ not in MODEL_MAPPING: |
|
return |
|
base_class = MODEL_MAPPING[config.__class__] |
|
|
|
if isinstance(base_class, tuple): |
|
base_class = base_class[0] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
|
|
|
|
class CopyClass(base_class): |
|
pass |
|
|
|
base_class_copy = CopyClass |
|
|
|
|
|
base_class_copy._keys_to_ignore_on_load_missing = [] |
|
|
|
|
|
|
|
base_class_copy._init_weights = _mock_init_weights |
|
base_class_copy.init_weights = _mock_all_init_weights |
|
|
|
model = model_class(config) |
|
state_dict = model.state_dict() |
|
|
|
|
|
|
|
random_key_to_del = random.choice(list(state_dict.keys())) |
|
del state_dict[random_key_to_del] |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.config.save_pretrained(tmpdirname) |
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) |
|
|
|
model_fast_init = base_class_copy.from_pretrained(tmpdirname) |
|
model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False) |
|
|
|
for key in model_fast_init.state_dict().keys(): |
|
if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor): |
|
max_diff = torch.max( |
|
model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key] |
|
).item() |
|
else: |
|
max_diff = torch.max( |
|
torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]) |
|
).item() |
|
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") |
|
|
|
def test_torch_save_load(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
if config.__class__ not in MODEL_MAPPING: |
|
return |
|
base_class = MODEL_MAPPING[config.__class__] |
|
|
|
if isinstance(base_class, tuple): |
|
base_class = base_class[0] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class == base_class: |
|
continue |
|
|
|
|
|
|
|
class CopyClass(base_class): |
|
pass |
|
|
|
base_class_copy = CopyClass |
|
|
|
|
|
base_class_copy._keys_to_ignore_on_load_missing = [] |
|
|
|
|
|
|
|
base_class_copy._init_weights = _mock_init_weights |
|
base_class_copy.init_weights = _mock_all_init_weights |
|
|
|
model = model_class(config) |
|
state_dict = model.state_dict() |
|
|
|
def check_equal(loaded): |
|
for key in state_dict.keys(): |
|
max_diff = torch.max( |
|
state_dict()[key] ^ loaded[key] |
|
if isinstance(state_dict[key], torch.BoolTensor) |
|
else torch.abs(state_dict[key] - loaded[key]) |
|
).item() |
|
self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin") |
|
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True) |
|
check_equal(load_state_dict(pt_checkpoint_path)) |
|
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False) |
|
check_equal(load_state_dict(pt_checkpoint_path)) |
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def test_determinism(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_determinism(first, second): |
|
out_1 = first.cpu().numpy() |
|
out_2 = second.cpu().numpy() |
|
out_1 = out_1[~np.isnan(out_1)] |
|
out_2 = out_2[~np.isnan(out_2)] |
|
max_diff = np.amax(np.abs(out_1 - out_2)) |
|
self.assertLessEqual(max_diff, 1e-5) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
first = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
second = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
|
|
if isinstance(first, tuple) and isinstance(second, tuple): |
|
for tensor1, tensor2 in zip(first, second): |
|
check_determinism(tensor1, tensor2) |
|
else: |
|
check_determinism(first, second) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = [ |
|
"input_ids", |
|
"attention_mask", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] |
|
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names |
|
else ["encoder_outputs"] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions: |
|
expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"] |
|
self.assertListEqual(arg_names, expected_arg_names) |
|
elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions: |
|
expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"] |
|
self.assertListEqual(arg_names, expected_arg_names) |
|
else: |
|
expected_arg_names = [model.main_input_name] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_batching_equivalence(self): |
|
""" |
|
Tests that the model supports batching and that the output is the nearly the same for the same input in |
|
different batch sizes. |
|
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to |
|
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535) |
|
""" |
|
|
|
def get_tensor_equivalence_function(batched_input): |
|
|
|
|
|
if "input_ids" not in batched_input: |
|
return lambda tensor1, tensor2: ( |
|
1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38) |
|
) |
|
return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2)) |
|
|
|
def recursive_check(batched_object, single_row_object, model_name, key): |
|
if isinstance(batched_object, (list, tuple)): |
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object): |
|
recursive_check(batched_object_value, single_row_object_value, model_name, key) |
|
elif isinstance(batched_object, dict): |
|
for batched_object_value, single_row_object_value in zip( |
|
batched_object.values(), single_row_object.values() |
|
): |
|
recursive_check(batched_object_value, single_row_object_value, model_name, key) |
|
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor): |
|
return |
|
elif batched_object.dim() == 0: |
|
return |
|
else: |
|
|
|
|
|
slice_ids = [slice(0, index) for index in single_row_object.shape] |
|
batched_row = batched_object[slice_ids] |
|
self.assertFalse( |
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}" |
|
) |
|
self.assertFalse( |
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}" |
|
) |
|
self.assertFalse( |
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}" |
|
) |
|
self.assertFalse( |
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}" |
|
) |
|
self.assertTrue( |
|
(equivalence(batched_row, single_row_object)) <= 1e-03, |
|
msg=( |
|
f"Batched and Single row outputs are not equal in {model_name} for key={key}. " |
|
f"Difference={equivalence(batched_row, single_row_object)}." |
|
), |
|
) |
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common() |
|
equivalence = get_tensor_equivalence_function(batched_input) |
|
|
|
for model_class in self.all_model_classes: |
|
config.output_hidden_states = True |
|
|
|
model_name = model_class.__name__ |
|
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"): |
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class) |
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class) |
|
model = model_class(config).to(torch_device).eval() |
|
|
|
batch_size = self.model_tester.batch_size |
|
single_row_input = {} |
|
for key, value in batched_input_prepared.items(): |
|
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0: |
|
|
|
single_batch_shape = value.shape[0] // batch_size |
|
single_row_input[key] = value[:single_batch_shape] |
|
else: |
|
single_row_input[key] = value |
|
|
|
with torch.no_grad(): |
|
model_batched_output = model(**batched_input_prepared) |
|
model_row_output = model(**single_row_input) |
|
|
|
if isinstance(model_batched_output, torch.Tensor): |
|
model_batched_output = {"model_output": model_batched_output} |
|
model_row_output = {"model_output": model_row_output} |
|
|
|
for key in model_batched_output: |
|
|
|
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key: |
|
model_batched_output[key] = model_batched_output[key][1:] |
|
model_row_output[key] = model_row_output[key][1:] |
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key) |
|
|
|
def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
if ( |
|
model_class.__name__ |
|
in [ |
|
*get_values(MODEL_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), |
|
] |
|
or not model_class.supports_gradient_checkpointing |
|
): |
|
continue |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.use_cache = False |
|
config.return_dict = True |
|
model = model_class(config) |
|
|
|
model.to(torch_device) |
|
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs) |
|
model.train() |
|
|
|
|
|
for p in model.parameters(): |
|
p.requires_grad_(True) |
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
loss = model(**inputs).loss |
|
loss.backward() |
|
optimizer.step() |
|
|
|
for k, v in model.named_parameters(): |
|
if v.requires_grad: |
|
self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!") |
|
|
|
def test_training(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
if model_class.__name__ in [ |
|
*get_values(MODEL_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), |
|
]: |
|
continue |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
def test_training_gradient_checkpointing(self): |
|
|
|
self.check_training_gradient_checkpointing() |
|
|
|
def test_training_gradient_checkpointing_use_reentrant(self): |
|
|
|
|
|
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True}) |
|
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self): |
|
|
|
|
|
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False}) |
|
|
|
def test_attention_outputs(self): |
|
if not self.has_attentions: |
|
self.skipTest(reason="Model does not output attentions") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None) |
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) |
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) |
|
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) |
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) |
|
chunk_length = getattr(self.model_tester, "chunk_length", None) |
|
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): |
|
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = False |
|
config.return_dict = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
|
|
del inputs_dict["output_attentions"] |
|
config.output_attentions = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
if chunk_length is not None: |
|
self.assertListEqual( |
|
list(attentions[0].shape[-4:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], |
|
) |
|
else: |
|
self.assertListEqual( |
|
list(attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
out_len = len(outputs) |
|
|
|
if self.is_encoder_decoder: |
|
correct_outlen = 5 |
|
|
|
|
|
if "labels" in inputs_dict: |
|
correct_outlen += 1 |
|
|
|
if model_class.__name__ in [ |
|
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES), |
|
]: |
|
correct_outlen += 1 |
|
if "past_key_values" in outputs: |
|
correct_outlen += 1 |
|
|
|
self.assertEqual(out_len, correct_outlen) |
|
|
|
|
|
decoder_attentions = outputs.decoder_attentions |
|
self.assertIsInstance(decoder_attentions, (list, tuple)) |
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(decoder_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], |
|
) |
|
|
|
|
|
cross_attentions = outputs.cross_attentions |
|
self.assertIsInstance(cross_attentions, (list, tuple)) |
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(cross_attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
decoder_seq_length, |
|
encoder_key_length, |
|
], |
|
) |
|
|
|
|
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"): |
|
added_hidden_states = self.model_tester.num_hidden_states_types |
|
elif self.is_encoder_decoder: |
|
added_hidden_states = 2 |
|
else: |
|
added_hidden_states = 1 |
|
self.assertEqual(out_len + added_hidden_states, len(outputs)) |
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) |
|
if chunk_length is not None: |
|
self.assertListEqual( |
|
list(self_attentions[0].shape[-4:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], |
|
) |
|
else: |
|
self.assertListEqual( |
|
list(self_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
|
|
@slow |
|
def test_torchscript_simple(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
self._create_and_check_torchscript(config, inputs_dict) |
|
|
|
@slow |
|
def test_torchscript_output_attentions(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_attentions = True |
|
self._create_and_check_torchscript(config, inputs_dict) |
|
|
|
@slow |
|
def test_torchscript_output_hidden_state(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = True |
|
self._create_and_check_torchscript(config, inputs_dict) |
|
|
|
|
|
def clear_torch_jit_class_registry(self): |
|
torch._C._jit_clear_class_registry() |
|
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() |
|
|
|
if hasattr(torch.jit._state, "_clear_class_state"): |
|
torch.jit._state._clear_class_state() |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
for model_class in self.all_model_classes: |
|
for attn_implementation in ["eager", "sdpa"]: |
|
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()): |
|
continue |
|
|
|
configs_no_init._attn_implementation = attn_implementation |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
main_input_name = model_class.main_input_name |
|
|
|
try: |
|
if model.config.is_encoder_decoder: |
|
model.config.use_cache = False |
|
main_input = inputs[main_input_name] |
|
attention_mask = inputs["attention_mask"] |
|
decoder_input_ids = inputs["decoder_input_ids"] |
|
decoder_attention_mask = inputs["decoder_attention_mask"] |
|
model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask) |
|
traced_model = torch.jit.trace( |
|
model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask) |
|
) |
|
elif "bbox" in inputs and "image" in inputs: |
|
input_ids = inputs["input_ids"] |
|
bbox = inputs["bbox"] |
|
image = inputs["image"].tensor |
|
model(input_ids, bbox, image) |
|
traced_model = torch.jit.trace( |
|
model, (input_ids, bbox, image), check_trace=False |
|
) |
|
elif "bbox" in inputs: |
|
input_ids = inputs["input_ids"] |
|
bbox = inputs["bbox"] |
|
model(input_ids, bbox) |
|
traced_model = torch.jit.trace( |
|
model, (input_ids, bbox), check_trace=False |
|
) |
|
elif ( |
|
"pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs |
|
): |
|
pixel_values = inputs["pixel_values"] |
|
prompt_pixel_values = inputs["prompt_pixel_values"] |
|
prompt_masks = inputs["prompt_masks"] |
|
model(pixel_values, prompt_pixel_values, prompt_masks) |
|
traced_model = torch.jit.trace( |
|
model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False |
|
) |
|
else: |
|
main_input = inputs[main_input_name] |
|
|
|
if model.config._attn_implementation == "sdpa": |
|
trace_input = {main_input_name: main_input} |
|
|
|
if "attention_mask" in inputs: |
|
trace_input["attention_mask"] = inputs["attention_mask"] |
|
else: |
|
self.skipTest("testing SDPA without attention_mask is not supported") |
|
|
|
model(main_input, attention_mask=inputs["attention_mask"]) |
|
|
|
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input) |
|
else: |
|
model(main_input) |
|
traced_model = torch.jit.trace(model, (main_input,)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
non_persistent_buffers = {} |
|
for key in loaded_model_state_dict.keys(): |
|
if key not in model_state_dict.keys(): |
|
non_persistent_buffers[key] = loaded_model_state_dict[key] |
|
|
|
loaded_model_state_dict = { |
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers |
|
} |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
model_buffers = list(model.buffers()) |
|
for non_persistent_buffer in non_persistent_buffers.values(): |
|
found_buffer = False |
|
for i, model_buffer in enumerate(model_buffers): |
|
if torch.equal(non_persistent_buffer, model_buffer): |
|
found_buffer = True |
|
break |
|
|
|
self.assertTrue(found_buffer) |
|
model_buffers.pop(i) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
if layer_name in loaded_model_state_dict: |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
|
|
|
|
self.clear_torch_jit_class_registry() |
|
|
|
def test_torch_fx(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
self._create_and_check_torch_fx_tracing(config, inputs_dict) |
|
|
|
def test_torch_fx_output_loss(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True) |
|
|
|
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False): |
|
if not is_torch_fx_available() or not self.fx_compatible: |
|
self.skipTest( |
|
f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx" |
|
) |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.return_dict = False |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss) |
|
|
|
|
|
inputs_to_test = [inputs] |
|
|
|
if model.config.is_encoder_decoder: |
|
model.config.use_cache = False |
|
labels = inputs.get("labels", None) |
|
input_names = [ |
|
"attention_mask", |
|
"decoder_attention_mask", |
|
"decoder_input_ids", |
|
"input_features", |
|
"input_ids", |
|
"input_values", |
|
] |
|
if labels is not None: |
|
input_names.append("labels") |
|
else: |
|
input_names = [ |
|
"attention_mask", |
|
"bbox", |
|
"input_features", |
|
"input_ids", |
|
"input_values", |
|
"pixel_values", |
|
"token_type_ids", |
|
"visual_feats", |
|
"visual_pos", |
|
] |
|
|
|
labels = inputs.get("labels", None) |
|
start_positions = inputs.get("start_positions", None) |
|
end_positions = inputs.get("end_positions", None) |
|
if labels is not None: |
|
input_names.append("labels") |
|
if start_positions is not None: |
|
input_names.append("start_positions") |
|
if end_positions is not None: |
|
input_names.append("end_positions") |
|
|
|
if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE: |
|
input_names.append("past_key_values") |
|
|
|
|
|
if "past_key_values" not in inputs: |
|
batch_size = inputs[next(iter(inputs))].shape[0] |
|
num_heads = model.config.num_attention_heads |
|
head_dim = model.config.hidden_size // model.config.num_attention_heads |
|
|
|
cache_shape = (batch_size, num_heads, 0, head_dim) |
|
empty_pkv = tuple( |
|
( |
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device), |
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device), |
|
) |
|
for i in range(model.config.num_hidden_layers) |
|
) |
|
|
|
cache_length = 9 |
|
cache_shape = (batch_size, num_heads, cache_length, head_dim) |
|
non_empty_pkv = tuple( |
|
( |
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device), |
|
torch.rand(cache_shape, dtype=torch.float, device=torch_device), |
|
) |
|
for i in range(model.config.num_hidden_layers) |
|
) |
|
|
|
inps = copy.deepcopy(inputs_to_test[0]) |
|
|
|
inputs_to_test[0]["past_key_values"] = empty_pkv |
|
|
|
inps["past_key_values"] = non_empty_pkv |
|
inputs_to_test.append(inps) |
|
|
|
past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float) |
|
inputs_to_test[1]["attention_mask"] = torch.cat( |
|
(past_mask, inputs_to_test[1]["attention_mask"]), dim=1 |
|
) |
|
|
|
for inps in inputs_to_test: |
|
filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names} |
|
input_names = list(filtered_inputs.keys()) |
|
|
|
if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and ( |
|
not hasattr(model.config, "problem_type") or model.config.problem_type is None |
|
): |
|
model.config.problem_type = "single_label_classification" |
|
|
|
traced_model = symbolic_trace(model, input_names) |
|
|
|
with torch.no_grad(): |
|
traced_output = traced_model(**filtered_inputs) |
|
model_output = model(**filtered_inputs) |
|
|
|
def flatten_output(output): |
|
flatten = [] |
|
for x in output: |
|
if isinstance(x, (tuple, list)): |
|
flatten += flatten_output(x) |
|
elif not isinstance(x, torch.Tensor): |
|
continue |
|
else: |
|
flatten.append(x) |
|
return flatten |
|
|
|
model_output = flatten_output(model_output) |
|
traced_output = flatten_output(traced_output) |
|
num_outputs = len(model_output) |
|
|
|
for i in range(num_outputs): |
|
self.assertTrue( |
|
torch.allclose(model_output[i], traced_output[i]), |
|
f"traced {i}th output doesn't match model {i}th output for {model_class}", |
|
) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl") |
|
try: |
|
with open(pkl_file_name, "wb") as f: |
|
pickle.dump(traced_model, f) |
|
with open(pkl_file_name, "rb") as f: |
|
loaded = pickle.load(f) |
|
except Exception as e: |
|
self.fail(f"Couldn't serialize / deserialize the traced model: {e}") |
|
|
|
loaded_output = loaded(**filtered_inputs) |
|
loaded_output = flatten_output(loaded_output) |
|
|
|
for i in range(num_outputs): |
|
self.assertTrue( |
|
torch.allclose(model_output[i], loaded_output[i]), |
|
f"serialized model {i}th output doesn't match model {i}th output for {model_class}", |
|
) |
|
|
|
|
|
|
|
self.clear_torch_jit_class_registry() |
|
|
|
def test_headmasking(self): |
|
if not self.test_head_masking: |
|
return |
|
|
|
global_rng.seed(42) |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
global_rng.seed() |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = True |
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
|
|
|
|
head_mask = torch.ones( |
|
self.model_tester.num_hidden_layers, |
|
self.model_tester.num_attention_heads, |
|
device=torch_device, |
|
) |
|
head_mask[0, 0] = 0 |
|
head_mask[-1, :-1] = 0 |
|
head_mask.requires_grad_(requires_grad=True) |
|
inputs = self._prepare_for_class(inputs_dict, model_class).copy() |
|
inputs["head_mask"] = head_mask |
|
if model.config.is_encoder_decoder: |
|
signature = inspect.signature(model.forward) |
|
arg_names = [*signature.parameters.keys()] |
|
if "decoder_head_mask" in arg_names: |
|
inputs["decoder_head_mask"] = head_mask |
|
if "cross_attn_head_mask" in arg_names: |
|
inputs["cross_attn_head_mask"] = head_mask |
|
outputs = model(**inputs, return_dict=True) |
|
|
|
|
|
output = sum(t.sum() for t in outputs[0]) |
|
output = output.sum() |
|
output.backward() |
|
multihead_outputs = head_mask.grad |
|
|
|
self.assertIsNotNone(multihead_outputs) |
|
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) |
|
|
|
def check_attentions_validity(attentions): |
|
|
|
for t in attentions: |
|
self.assertLess( |
|
torch.sum(torch.isnan(t)), t.numel() / 4 |
|
) |
|
attentions = [ |
|
t.masked_fill(torch.isnan(t), 0.0) for t in attentions |
|
] |
|
|
|
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0) |
|
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0) |
|
if len(attentions) > 2: |
|
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) |
|
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0) |
|
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0) |
|
|
|
if model.config.is_encoder_decoder: |
|
check_attentions_validity(outputs.encoder_attentions) |
|
check_attentions_validity(outputs.decoder_attentions) |
|
check_attentions_validity(outputs.cross_attentions) |
|
else: |
|
check_attentions_validity(outputs.attentions) |
|
|
|
def test_head_pruning(self): |
|
if not self.test_pruning: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
( |
|
config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
if "head_mask" in inputs_dict: |
|
del inputs_dict["head_mask"] |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = False |
|
model = model_class(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
heads_to_prune = { |
|
0: list(range(1, self.model_tester.num_attention_heads)), |
|
-1: [0], |
|
} |
|
model.prune_heads(heads_to_prune) |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
attentions = outputs[-1] |
|
|
|
self.assertEqual(attentions[0].shape[-3], 1) |
|
|
|
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) |
|
|
|
def test_head_pruning_save_load_from_pretrained(self): |
|
if not self.test_pruning: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
( |
|
config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
if "head_mask" in inputs_dict: |
|
del inputs_dict["head_mask"] |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = False |
|
model = model_class(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
heads_to_prune = { |
|
0: list(range(1, self.model_tester.num_attention_heads)), |
|
-1: [0], |
|
} |
|
model.prune_heads(heads_to_prune) |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name: |
|
model.save_pretrained(temp_dir_name) |
|
model = model_class.from_pretrained(temp_dir_name) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs[-1] |
|
self.assertEqual(attentions[0].shape[-3], 1) |
|
|
|
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) |
|
|
|
def test_head_pruning_save_load_from_config_init(self): |
|
if not self.test_pruning: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
( |
|
config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
if "head_mask" in inputs_dict: |
|
del inputs_dict["head_mask"] |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = False |
|
|
|
heads_to_prune = { |
|
0: list(range(1, self.model_tester.num_attention_heads)), |
|
-1: [0], |
|
} |
|
config.pruned_heads = heads_to_prune |
|
|
|
model = model_class(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs[-1] |
|
|
|
self.assertEqual(attentions[0].shape[-3], 1) |
|
|
|
|
|
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1) |
|
|
|
def test_head_pruning_integration(self): |
|
if not self.test_pruning: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
( |
|
config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
if "head_mask" in inputs_dict: |
|
del inputs_dict["head_mask"] |
|
|
|
inputs_dict["output_attentions"] = True |
|
config.output_hidden_states = False |
|
|
|
heads_to_prune = {1: [1, 2]} |
|
config.pruned_heads = heads_to_prune |
|
|
|
model = model_class(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs[-1] |
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) |
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name: |
|
model.save_pretrained(temp_dir_name) |
|
model = model_class.from_pretrained(temp_dir_name) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs[-1] |
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0) |
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) |
|
|
|
heads_to_prune = {0: [0], 1: [1, 2]} |
|
model.prune_heads(heads_to_prune) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs[-1] |
|
|
|
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1) |
|
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2) |
|
|
|
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]}) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states |
|
|
|
expected_num_layers = getattr( |
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 |
|
) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"): |
|
seq_length = self.model_tester.encoder_seq_length |
|
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: |
|
seq_length = seq_length * self.model_tester.chunk_length |
|
else: |
|
seq_length = self.model_tester.seq_length |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[seq_length, self.model_tester.hidden_size], |
|
) |
|
|
|
if config.is_encoder_decoder: |
|
hidden_states = outputs.decoder_hidden_states |
|
|
|
self.assertIsInstance(hidden_states, (list, tuple)) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
seq_len = getattr(self.model_tester, "seq_length", None) |
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[decoder_seq_length, self.model_tester.hidden_size], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
|
|
model_class = self.all_model_classes[0] |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
outputs = model(**inputs) |
|
|
|
output = outputs[0] |
|
|
|
if config.is_encoder_decoder: |
|
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0] |
|
encoder_hidden_states.retain_grad() |
|
|
|
decoder_hidden_states = outputs.decoder_hidden_states[0] |
|
decoder_hidden_states.retain_grad() |
|
|
|
if self.has_attentions: |
|
encoder_attentions = outputs.encoder_attentions[0] |
|
encoder_attentions.retain_grad() |
|
|
|
decoder_attentions = outputs.decoder_attentions[0] |
|
decoder_attentions.retain_grad() |
|
|
|
cross_attentions = outputs.cross_attentions[0] |
|
cross_attentions.retain_grad() |
|
|
|
output.flatten()[0].backward(retain_graph=True) |
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad) |
|
self.assertIsNotNone(decoder_hidden_states.grad) |
|
|
|
if self.has_attentions: |
|
self.assertIsNotNone(encoder_attentions.grad) |
|
self.assertIsNotNone(decoder_attentions.grad) |
|
self.assertIsNotNone(cross_attentions.grad) |
|
else: |
|
|
|
hidden_states = outputs.hidden_states[0] |
|
hidden_states.retain_grad() |
|
|
|
if self.has_attentions: |
|
attentions = outputs.attentions[0] |
|
attentions.retain_grad() |
|
|
|
output.flatten()[0].backward(retain_graph=True) |
|
|
|
self.assertIsNotNone(hidden_states.grad) |
|
|
|
if self.has_attentions: |
|
self.assertIsNotNone(attentions.grad) |
|
|
|
def test_feed_forward_chunking(self): |
|
( |
|
original_config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
torch.manual_seed(0) |
|
config = copy.deepcopy(original_config) |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
|
|
torch.manual_seed(0) |
|
config.chunk_size_feed_forward = 1 |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0] |
|
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3)) |
|
|
|
def test_resize_position_vector_embeddings(self): |
|
if not self.test_resize_position_embeddings: |
|
return |
|
|
|
( |
|
original_config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
config = copy.deepcopy(original_config) |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
if self.model_tester.is_training is False: |
|
model.eval() |
|
|
|
max_position_embeddings = config.max_position_embeddings |
|
|
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings() |
|
encoder_cloned_embeddings = encoder_model_embed.weight.clone() |
|
decoder_cloned_embeddings = decoder_model_embed.weight.clone() |
|
else: |
|
model_embed = model.get_position_embeddings() |
|
cloned_embeddings = model_embed.weight.clone() |
|
|
|
|
|
|
|
model.resize_position_embeddings(max_position_embeddings + 10) |
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10) |
|
|
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings() |
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10) |
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10) |
|
else: |
|
model_embed = model.get_position_embeddings() |
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) |
|
|
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
|
|
|
|
model.resize_position_embeddings(max_position_embeddings - 5) |
|
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5) |
|
|
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_model_embed, decoder_model_embed = model.get_position_embeddings() |
|
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5) |
|
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5) |
|
else: |
|
model_embed = model.get_position_embeddings() |
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5) |
|
|
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
|
|
models_equal = True |
|
|
|
if model.config.is_encoder_decoder: |
|
for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
else: |
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_resize_tokens_embeddings(self): |
|
( |
|
original_config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
if not self.test_resize_embeddings: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
config = copy.deepcopy(original_config) |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
if self.model_tester.is_training is False: |
|
model.eval() |
|
|
|
model_vocab_size = config.vocab_size |
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size) |
|
cloned_embeddings = model_embed.weight.clone() |
|
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10) |
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) |
|
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) |
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15) |
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) |
|
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) |
|
|
|
|
|
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) |
|
|
|
|
|
if "decoder_input_ids" in inputs_dict: |
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) |
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
|
|
models_equal = True |
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
config = copy.deepcopy(original_config) |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
model_vocab_size = config.vocab_size |
|
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) |
|
self.assertTrue(model.config.vocab_size + 10, model_vocab_size) |
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) |
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0) |
|
|
|
self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size) |
|
self.assertTrue(model.config.vocab_size, model.vocab_size) |
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) |
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0) |
|
|
|
|
|
target_dimension = 128 |
|
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) |
|
self.assertTrue(model_embed.weight.shape[0], target_dimension) |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, |
|
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", |
|
): |
|
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) |
|
|
|
def test_resize_embeddings_untied(self): |
|
( |
|
original_config, |
|
inputs_dict, |
|
) = self.model_tester.prepare_config_and_inputs_for_common() |
|
if not self.test_resize_embeddings: |
|
return |
|
|
|
original_config.tie_word_embeddings = False |
|
|
|
|
|
if original_config.tie_word_embeddings: |
|
return |
|
|
|
for model_class in self.all_model_classes: |
|
config = copy.deepcopy(original_config) |
|
model = model_class(config).to(torch_device) |
|
|
|
|
|
if model.get_output_embeddings() is None: |
|
continue |
|
|
|
|
|
model_vocab_size = config.vocab_size |
|
model.resize_token_embeddings(model_vocab_size + 10) |
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) |
|
output_embeds = model.get_output_embeddings() |
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) |
|
|
|
if output_embeds.bias is not None: |
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) |
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
|
|
model.resize_token_embeddings(model_vocab_size - 15) |
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) |
|
|
|
output_embeds = model.get_output_embeddings() |
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) |
|
|
|
if output_embeds.bias is not None: |
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) |
|
|
|
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) |
|
if "decoder_input_ids" in inputs_dict: |
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) |
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
def test_model_common_attributes(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding)) |
|
model.set_input_embeddings(nn.Embedding(10, 10)) |
|
x = model.get_output_embeddings() |
|
self.assertTrue(x is None or isinstance(x, nn.Linear)) |
|
|
|
def test_model_main_input_name(self): |
|
for model_class in self.all_model_classes: |
|
model_signature = inspect.signature(getattr(model_class, "forward")) |
|
|
|
observed_main_input_name = list(model_signature.parameters.keys())[1] |
|
self.assertEqual(model_class.main_input_name, observed_main_input_name) |
|
|
|
def test_correct_missing_keys(self): |
|
if not self.test_missing_keys: |
|
return |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
base_model_prefix = model.base_model_prefix |
|
|
|
if hasattr(model, base_model_prefix): |
|
extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)} |
|
extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)}) |
|
|
|
if model._keys_to_ignore_on_load_missing: |
|
for key in model._keys_to_ignore_on_load_missing: |
|
extra_params.pop(key, None) |
|
|
|
if not extra_params: |
|
|
|
|
|
|
|
continue |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir_name: |
|
model.base_model.save_pretrained(temp_dir_name) |
|
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True) |
|
self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__) |
|
|
|
def test_tie_model_weights(self): |
|
if not self.test_torchscript: |
|
return |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def check_same_values(layer_1, layer_2): |
|
equal = True |
|
for p1, p2 in zip(layer_1.weight, layer_2.weight): |
|
if p1.data.ne(p2.data).sum() > 0: |
|
equal = False |
|
return equal |
|
|
|
for model_class in self.all_model_classes: |
|
config.torchscript = True |
|
model_not_tied = model_class(config) |
|
if model_not_tied.get_output_embeddings() is None: |
|
continue |
|
|
|
config_tied = copy.deepcopy(config) |
|
config_tied.torchscript = False |
|
model_tied = model_class(config_tied) |
|
params_tied = list(model_tied.parameters()) |
|
|
|
|
|
|
|
|
|
model_tied.resize_token_embeddings(config.vocab_size + 10) |
|
params_tied_2 = list(model_tied.parameters()) |
|
self.assertEqual(len(params_tied_2), len(params_tied)) |
|
|
|
@require_safetensors |
|
def test_can_use_safetensors(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model_tied = model_class(config) |
|
with tempfile.TemporaryDirectory() as d: |
|
try: |
|
model_tied.save_pretrained(d, safe_serialization=True) |
|
except Exception as e: |
|
raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}") |
|
|
|
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) |
|
|
|
reloaded_state = model_reloaded.state_dict() |
|
for k, v in model_tied.state_dict().items(): |
|
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") |
|
torch.testing.assert_close( |
|
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" |
|
) |
|
|
|
self.assertEqual(infos["missing_keys"], []) |
|
|
|
|
|
ptrs = defaultdict(list) |
|
for k, v in model_tied.state_dict().items(): |
|
ptrs[v.data_ptr()].append(k) |
|
|
|
shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1} |
|
|
|
for _, shared_names in shared_ptrs.items(): |
|
reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names} |
|
self.assertEqual( |
|
len(reloaded_ptrs), |
|
1, |
|
f"The shared pointers are incorrect, found different pointers for keys {shared_names}", |
|
) |
|
|
|
def test_load_save_without_tied_weights(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.tie_word_embeddings = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
with tempfile.TemporaryDirectory() as d: |
|
model.save_pretrained(d) |
|
|
|
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True) |
|
|
|
reloaded_state = model_reloaded.state_dict() |
|
for k, v in model.state_dict().items(): |
|
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded") |
|
torch.testing.assert_close( |
|
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}" |
|
) |
|
|
|
self.assertEqual(infos["missing_keys"], []) |
|
|
|
def test_tied_weights_keys(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.tie_word_embeddings = True |
|
for model_class in self.all_model_classes: |
|
model_tied = model_class(config) |
|
|
|
ptrs = collections.defaultdict(list) |
|
for name, tensor in model_tied.state_dict().items(): |
|
ptrs[id_tensor_storage(tensor)].append(name) |
|
|
|
|
|
tied_params = [names for _, names in ptrs.items() if len(names) > 1] |
|
|
|
tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else [] |
|
|
|
for key in tied_weight_keys: |
|
is_tied_key = any(re.search(key, p) for group in tied_params for p in group) |
|
self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.") |
|
|
|
|
|
for key in tied_weight_keys: |
|
for i in range(len(tied_params)): |
|
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None] |
|
|
|
tied_params = [group for group in tied_params if len(group) > 1] |
|
self.assertListEqual( |
|
tied_params, |
|
[], |
|
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.", |
|
) |
|
|
|
def test_model_weights_reload_no_missing_tied_weights(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
|
|
placeholder_dict = {"tensor": torch.tensor([1, 2])} |
|
safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"}) |
|
model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True) |
|
|
|
prefix = f"{model_reloaded.base_model_prefix}." |
|
params = dict(model_reloaded.named_parameters()) |
|
params.update(dict(model_reloaded.named_buffers())) |
|
param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()} |
|
|
|
missing_keys = set(infos["missing_keys"]) |
|
|
|
extra_missing = missing_keys - param_names |
|
|
|
|
|
ptrs = collections.defaultdict(list) |
|
for name, tensor in model_reloaded.state_dict().items(): |
|
ptrs[id_tensor_storage(tensor)].append(name) |
|
tied_params = [names for _, names in ptrs.items() if len(names) > 1] |
|
for group in tied_params: |
|
group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group} |
|
|
|
if len(group - extra_missing) > 0: |
|
extra_missing = extra_missing - set(group) |
|
|
|
self.assertEqual( |
|
extra_missing, |
|
set(), |
|
f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. " |
|
f"For debugging, tied parameters are {tied_params}", |
|
) |
|
|
|
missed_missing = param_names - missing_keys |
|
|
|
buffers = [n for n, _ in model_reloaded.named_buffers()] |
|
nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()} |
|
nonpersistent_buffers = { |
|
k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers |
|
} |
|
missed_missing = missed_missing - nonpersistent_buffers |
|
|
|
if model_reloaded._keys_to_ignore_on_load_missing is None: |
|
expected_missing = set() |
|
else: |
|
expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing) |
|
self.assertEqual( |
|
missed_missing, |
|
expected_missing, |
|
f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real" |
|
" parameters. If they are non persistent buffers make sure to instantiate them with" |
|
" `persistent=False`", |
|
) |
|
|
|
def test_model_outputs_equivalence(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
def set_nan_tensor_to_zero(t): |
|
t[t != t] = 0 |
|
return t |
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): |
|
with torch.no_grad(): |
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) |
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip( |
|
tuple_object.values(), dict_object.values() |
|
): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
torch.allclose( |
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 |
|
), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
recursive_check(tuple_output, dict_output) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) |
|
|
|
if self.has_attentions: |
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) |
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
check_equivalence( |
|
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} |
|
) |
|
|
|
|
|
|
|
def _make_attention_mask_non_null(self, inputs_dict): |
|
"""Make sure no sequence has all zeros as attention mask""" |
|
|
|
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: |
|
if k in inputs_dict: |
|
attention_mask = inputs_dict[k] |
|
|
|
|
|
|
|
|
|
attention_mask = torch.cat( |
|
[torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_dict[k] = attention_mask |
|
|
|
|
|
|
|
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): |
|
"""For temporarily ignoring some failed test cases (issues to be fixed)""" |
|
|
|
tf_keys = {k for k, v in tf_outputs.items() if v is not None} |
|
pt_keys = {k for k, v in pt_outputs.items() if v is not None} |
|
|
|
key_differences = tf_keys.symmetric_difference(pt_keys) |
|
|
|
if model_class.__name__ in [ |
|
"FlaubertWithLMHeadModel", |
|
"FunnelForPreTraining", |
|
"ElectraForPreTraining", |
|
"XLMWithLMHeadModel", |
|
]: |
|
for k in key_differences: |
|
if k in ["loss", "losses"]: |
|
tf_keys.discard(k) |
|
pt_keys.discard(k) |
|
elif model_class.__name__.startswith("GPT2"): |
|
|
|
tf_keys.discard("past_key_values") |
|
pt_keys.discard("past_key_values") |
|
|
|
|
|
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) |
|
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) |
|
|
|
return new_tf_outputs, new_pt_outputs |
|
|
|
|
|
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): |
|
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. |
|
|
|
Args: |
|
model_class: The class of the model that is currently testing. For example, `TFBertModel`, |
|
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative |
|
error messages. |
|
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. |
|
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element |
|
being a named field in the output. |
|
""" |
|
|
|
self.assertEqual(type(name), str) |
|
if attributes is not None: |
|
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") |
|
|
|
|
|
if isinstance(tf_outputs, ModelOutput): |
|
self.assertTrue( |
|
isinstance(pt_outputs, ModelOutput), |
|
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", |
|
) |
|
|
|
|
|
|
|
tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) |
|
|
|
tf_keys = [k for k, v in tf_outputs.items() if v is not None] |
|
pt_keys = [k for k, v in pt_outputs.items() if v is not None] |
|
|
|
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") |
|
|
|
|
|
|
|
attributes = tuple([f"{name}.{k}" for k in tf_keys]) |
|
self.check_pt_tf_outputs( |
|
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes |
|
) |
|
|
|
|
|
elif type(tf_outputs) in [tuple, list]: |
|
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") |
|
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") |
|
|
|
if attributes is not None: |
|
|
|
self.assertEqual( |
|
len(attributes), |
|
len(tf_outputs), |
|
f"{name}: The tuple `attributes` should have the same length as `tf_outputs`", |
|
) |
|
else: |
|
|
|
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) |
|
|
|
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): |
|
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) |
|
|
|
elif isinstance(tf_outputs, tf.Tensor): |
|
self.assertTrue( |
|
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" |
|
) |
|
|
|
tf_outputs = tf_outputs.numpy() |
|
pt_outputs = pt_outputs.detach().to("cpu").numpy() |
|
|
|
self.assertEqual( |
|
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" |
|
) |
|
|
|
|
|
if np.isscalar(tf_outputs): |
|
tf_outputs = np.array([tf_outputs]) |
|
pt_outputs = np.array([pt_outputs]) |
|
|
|
tf_nans = np.isnan(tf_outputs) |
|
pt_nans = np.isnan(pt_outputs) |
|
|
|
pt_outputs[tf_nans] = 0 |
|
tf_outputs[tf_nans] = 0 |
|
pt_outputs[pt_nans] = 0 |
|
tf_outputs[pt_nans] = 0 |
|
|
|
max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) |
|
self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).") |
|
else: |
|
raise ValueError( |
|
"`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got" |
|
f" {type(tf_outputs)} instead." |
|
) |
|
|
|
def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict): |
|
tf_inputs_dict = {} |
|
for key, tensor in pt_inputs_dict.items(): |
|
|
|
if isinstance(tensor, bool): |
|
tf_inputs_dict[key] = tensor |
|
elif key == "input_values": |
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) |
|
elif key == "pixel_values": |
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) |
|
elif key == "input_features": |
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) |
|
|
|
elif tensor.is_floating_point(): |
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32) |
|
else: |
|
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32) |
|
|
|
return tf_inputs_dict |
|
|
|
def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): |
|
tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) |
|
|
|
|
|
pt_inputs_dict = { |
|
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() |
|
} |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
|
|
pt_model.eval() |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs_dict) |
|
tf_outputs = tf_model(tf_inputs_dict) |
|
|
|
|
|
|
|
|
|
tf_loss = getattr(tf_outputs, "loss", None) |
|
if tf_loss is not None: |
|
tf_outputs.loss = tf.math.reduce_mean(tf_loss) |
|
|
|
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model)) |
|
|
|
@is_pt_tf_cross_test |
|
def test_pt_tf_model_equivalence(self, allow_missing_keys=False): |
|
import transformers |
|
|
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
tf_model_class_name = "TF" + model_class.__name__ |
|
if not hasattr(transformers, tf_model_class_name): |
|
|
|
return |
|
|
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
|
|
|
|
|
|
self._make_attention_mask_non_null(inputs_dict) |
|
|
|
tf_model_class = getattr(transformers, tf_model_class_name) |
|
|
|
pt_model = model_class(config) |
|
tf_model = tf_model_class(config) |
|
|
|
pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
pt_inputs_dict_with_labels = self._prepare_for_class( |
|
inputs_dict, |
|
model_class, |
|
|
|
return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False, |
|
) |
|
|
|
|
|
tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys()) |
|
|
|
|
|
tf_input_keys.discard("head_mask") |
|
tf_input_keys.discard("cross_attn_head_mask") |
|
tf_input_keys.discard("decoder_head_mask") |
|
|
|
pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys} |
|
pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys} |
|
|
|
|
|
|
|
if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()): |
|
pt_inputs_dict_with_labels = None |
|
|
|
|
|
|
|
tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict) |
|
tf_model = transformers.load_pytorch_model_in_tf2_model( |
|
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys |
|
) |
|
pt_model = transformers.load_tf2_model_in_pytorch_model( |
|
pt_model, tf_model, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
|
|
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) |
|
|
|
if pt_inputs_dict_with_labels: |
|
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") |
|
torch.save(pt_model.state_dict(), pt_checkpoint_path) |
|
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( |
|
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") |
|
tf_model.save_weights(tf_checkpoint_path) |
|
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( |
|
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys |
|
) |
|
|
|
|
|
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) |
|
|
|
if pt_inputs_dict_with_labels: |
|
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels) |
|
|
|
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float): |
|
diff = np.abs((a - b)).max() |
|
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).") |
|
|
|
def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): |
|
""" |
|
Args: |
|
model_class: The class of the model that is currently testing. For example, ..., etc. |
|
Currently unused, but it could make debugging easier and faster. |
|
|
|
names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs. |
|
Currently unused, but in the future, we could use this information to make the error message clearer |
|
by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax. |
|
""" |
|
|
|
self.assertEqual(type(name), str) |
|
if attributes is not None: |
|
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") |
|
|
|
|
|
if isinstance(fx_outputs, ModelOutput): |
|
self.assertTrue( |
|
isinstance(pt_outputs, ModelOutput), |
|
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is", |
|
) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch") |
|
|
|
|
|
|
|
attributes = tuple([f"{name}.{k}" for k in fx_keys]) |
|
self.check_pt_flax_outputs( |
|
fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes |
|
) |
|
|
|
|
|
elif type(fx_outputs) in [tuple, list]: |
|
self.assertEqual( |
|
type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch" |
|
) |
|
self.assertEqual( |
|
len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch" |
|
) |
|
|
|
if attributes is not None: |
|
|
|
self.assertEqual( |
|
len(attributes), |
|
len(fx_outputs), |
|
f"{name}: The tuple `attributes` should have the same length as `fx_outputs`", |
|
) |
|
else: |
|
|
|
attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))]) |
|
|
|
for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes): |
|
self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr) |
|
|
|
elif isinstance(fx_outputs, jnp.ndarray): |
|
self.assertTrue( |
|
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is" |
|
) |
|
|
|
|
|
fx_outputs = np.array(fx_outputs) |
|
pt_outputs = pt_outputs.detach().to("cpu").numpy() |
|
|
|
self.assertEqual( |
|
fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch" |
|
) |
|
|
|
|
|
if np.isscalar(fx_outputs): |
|
fx_outputs = np.array([fx_outputs]) |
|
pt_outputs = np.array([pt_outputs]) |
|
|
|
fx_nans = np.isnan(fx_outputs) |
|
pt_nans = np.isnan(pt_outputs) |
|
|
|
pt_outputs[fx_nans] = 0 |
|
fx_outputs[fx_nans] = 0 |
|
pt_outputs[pt_nans] = 0 |
|
fx_outputs[pt_nans] = 0 |
|
|
|
max_diff = np.amax(np.abs(fx_outputs - pt_outputs)) |
|
self.assertLessEqual( |
|
max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})." |
|
) |
|
else: |
|
raise ValueError( |
|
"`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got" |
|
f" {type(fx_outputs)} instead." |
|
) |
|
|
|
@is_pt_flax_cross_test |
|
def test_equivalence_pt_to_flax(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
fx_model_class_name = "Flax" + model_class.__name__ |
|
|
|
if not hasattr(transformers, fx_model_class_name): |
|
|
|
return |
|
|
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
fx_model_class = getattr(transformers, fx_model_class_name) |
|
|
|
|
|
pt_model = model_class(config).eval() |
|
|
|
|
|
pt_model.config.use_cache = False |
|
|
|
|
|
fx_model = fx_model_class(config, dtype=jnp.float32) |
|
|
|
|
|
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() |
|
|
|
|
|
pt_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
|
|
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} |
|
|
|
|
|
pt_inputs = { |
|
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() |
|
} |
|
|
|
|
|
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} |
|
|
|
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) |
|
fx_model.params = fx_state |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs) |
|
fx_outputs = fx_model(**fx_inputs) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname) |
|
fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
fx_outputs_loaded = fx_model_loaded(**fx_inputs) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class) |
|
|
|
@is_pt_flax_cross_test |
|
def test_equivalence_flax_to_pt(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
with self.subTest(model_class.__name__): |
|
fx_model_class_name = "Flax" + model_class.__name__ |
|
|
|
if not hasattr(transformers, fx_model_class_name): |
|
|
|
return |
|
|
|
|
|
config.output_hidden_states = True |
|
config.output_attentions = self.has_attentions |
|
|
|
fx_model_class = getattr(transformers, fx_model_class_name) |
|
|
|
|
|
pt_model = model_class(config).eval() |
|
|
|
|
|
pt_model.config.use_cache = False |
|
|
|
|
|
fx_model = fx_model_class(config, dtype=jnp.float32) |
|
|
|
|
|
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() |
|
|
|
|
|
pt_inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
|
|
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} |
|
|
|
|
|
pt_inputs = { |
|
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items() |
|
} |
|
|
|
|
|
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} |
|
|
|
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) |
|
|
|
|
|
pt_model.tie_weights() |
|
|
|
|
|
pt_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
pt_outputs = pt_model(**pt_inputs) |
|
fx_outputs = fx_model(**fx_inputs) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
fx_model.save_pretrained(tmpdirname) |
|
pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) |
|
|
|
|
|
pt_model_loaded.to(torch_device) |
|
pt_model_loaded.eval() |
|
|
|
with torch.no_grad(): |
|
pt_outputs_loaded = pt_model_loaded(**pt_inputs) |
|
|
|
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None]) |
|
pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None]) |
|
|
|
self.assertEqual(fx_keys, pt_keys) |
|
self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class) |
|
|
|
def test_inputs_embeds(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if not self.is_encoder_decoder: |
|
input_ids = inputs["input_ids"] |
|
del inputs["input_ids"] |
|
else: |
|
encoder_input_ids = inputs["input_ids"] |
|
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) |
|
del inputs["input_ids"] |
|
inputs.pop("decoder_input_ids", None) |
|
|
|
wte = model.get_input_embeddings() |
|
if not self.is_encoder_decoder: |
|
inputs["inputs_embeds"] = wte(input_ids) |
|
else: |
|
inputs["inputs_embeds"] = wte(encoder_input_ids) |
|
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) |
|
|
|
with torch.no_grad(): |
|
model(**inputs)[0] |
|
|
|
@require_torch_multi_gpu |
|
def test_multi_gpu_data_parallel_forward(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
|
|
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] |
|
for k in blacklist_non_batched_params: |
|
inputs_dict.pop(k, None) |
|
|
|
|
|
for k, v in inputs_dict.items(): |
|
if torch.is_tensor(v): |
|
inputs_dict[k] = v.to(0) |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config=config) |
|
model.to(0) |
|
model.eval() |
|
|
|
|
|
model = nn.DataParallel(model) |
|
with torch.no_grad(): |
|
_ = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
@require_torch_multi_gpu |
|
def test_model_parallelization(self): |
|
if not self.test_model_parallel: |
|
return |
|
|
|
|
|
def get_current_gpu_memory_use(): |
|
"""returns a list of cuda memory allocations per GPU in MBs""" |
|
|
|
per_device_memory = [] |
|
for id in range(torch.cuda.device_count()): |
|
with torch.cuda.device(id): |
|
per_device_memory.append(torch.cuda.memory_allocated() >> 20) |
|
|
|
return per_device_memory |
|
|
|
|
|
config = self.model_tester.get_large_model_config() |
|
|
|
for model_class in self.all_parallelizable_model_classes: |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
memory_at_start = get_current_gpu_memory_use() |
|
|
|
|
|
model = model_class(config) |
|
model.to("cuda:0") |
|
memory_after_model_load = get_current_gpu_memory_use() |
|
|
|
|
|
self.assertGreater(memory_after_model_load[0], memory_at_start[0]) |
|
|
|
del model |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
memory_at_start = get_current_gpu_memory_use() |
|
|
|
|
|
model = model_class(config) |
|
model.parallelize() |
|
memory_after_parallelization = get_current_gpu_memory_use() |
|
|
|
|
|
for n in range(len(model.device_map.keys())): |
|
self.assertGreater(memory_after_parallelization[n], memory_at_start[n]) |
|
|
|
|
|
self.assertLess(memory_after_parallelization[0], memory_after_model_load[0]) |
|
|
|
|
|
|
|
self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1]) |
|
|
|
del model |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@require_torch_multi_gpu |
|
def test_model_parallel_equal_results(self): |
|
if not self.test_model_parallel: |
|
return |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_parallelizable_model_classes: |
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
def cast_to_device(dictionary, device): |
|
output = {} |
|
for k, v in dictionary.items(): |
|
if isinstance(v, torch.Tensor): |
|
output[k] = v.to(device) |
|
else: |
|
output[k] = v |
|
|
|
return output |
|
|
|
model = model_class(config) |
|
output = model(**cast_to_device(inputs_dict, "cpu")) |
|
|
|
model.parallelize() |
|
|
|
parallel_output = model(**cast_to_device(inputs_dict, "cuda:0")) |
|
|
|
for value, parallel_value in zip(output, parallel_output): |
|
if isinstance(value, torch.Tensor): |
|
self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7)) |
|
elif isinstance(value, (Tuple, List)): |
|
for value_, parallel_value_ in zip(value, parallel_value): |
|
self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7)) |
|
|
|
def check_device_map_is_respected(self, model, device_map): |
|
for param_name, param in model.named_parameters(): |
|
|
|
while len(param_name) > 0 and param_name not in device_map: |
|
param_name = ".".join(param_name.split(".")[:-1]) |
|
if param_name not in device_map: |
|
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.") |
|
|
|
param_device = device_map[param_name] |
|
if param_device in ["cpu", "disk"]: |
|
self.assertEqual(param.device, torch.device("meta")) |
|
else: |
|
self.assertEqual(param.device, torch.device(param_device)) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_gpu |
|
def test_disk_offload_bin(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class._no_split_modules is None: |
|
continue |
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config).eval() |
|
model = model.to(torch_device) |
|
torch.manual_seed(0) |
|
base_output = model(**inputs_dict_class) |
|
|
|
model_size = compute_module_sizes(model)[""] |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.cpu().save_pretrained(tmp_dir, safe_serialization=False) |
|
|
|
with self.assertRaises(ValueError): |
|
max_size = int(self.model_split_percents[0] * model_size) |
|
max_memory = {0: max_size, "cpu": max_size} |
|
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) |
|
|
|
max_size = int(self.model_split_percents[1] * model_size) |
|
max_memory = {0: max_size, "cpu": max_size} |
|
new_model = model_class.from_pretrained( |
|
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir |
|
) |
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map) |
|
torch.manual_seed(0) |
|
new_output = new_model(**inputs_dict_class) |
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): |
|
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) |
|
else: |
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_gpu |
|
def test_disk_offload_safetensors(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class._no_split_modules is None: |
|
continue |
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config).eval() |
|
model = model.to(torch_device) |
|
torch.manual_seed(0) |
|
base_output = model(**inputs_dict_class) |
|
|
|
model_size = compute_module_sizes(model)[""] |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.cpu().save_pretrained(tmp_dir) |
|
|
|
max_size = int(self.model_split_percents[1] * model_size) |
|
max_memory = {0: max_size, "cpu": max_size} |
|
|
|
|
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) |
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map) |
|
torch.manual_seed(0) |
|
new_output = new_model(**inputs_dict_class) |
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): |
|
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) |
|
else: |
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_gpu |
|
def test_cpu_offload(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class._no_split_modules is None: |
|
continue |
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config).eval() |
|
model = model.to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
base_output = model(**inputs_dict_class) |
|
|
|
model_size = compute_module_sizes(model)[""] |
|
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.cpu().save_pretrained(tmp_dir) |
|
|
|
for max_size in max_gpu_sizes: |
|
max_memory = {0: max_size, "cpu": model_size * 2} |
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) |
|
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"}) |
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map) |
|
|
|
torch.manual_seed(0) |
|
new_output = new_model(**inputs_dict_class) |
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): |
|
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) |
|
else: |
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) |
|
|
|
@require_accelerate |
|
@mark.accelerate_tests |
|
@require_torch_multi_gpu |
|
def test_model_parallelism(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class._no_split_modules is None: |
|
continue |
|
|
|
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class) |
|
model = model_class(config).eval() |
|
model = model.to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
base_output = model(**inputs_dict_class) |
|
|
|
model_size = compute_module_sizes(model)[""] |
|
|
|
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]] |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.cpu().save_pretrained(tmp_dir) |
|
|
|
for max_size in max_gpu_sizes: |
|
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2} |
|
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory) |
|
|
|
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1}) |
|
|
|
self.check_device_map_is_respected(new_model, new_model.hf_device_map) |
|
|
|
torch.manual_seed(0) |
|
new_output = new_model(**inputs_dict_class) |
|
|
|
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple): |
|
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0])) |
|
else: |
|
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5)) |
|
|
|
def test_problem_types(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
problem_types = [ |
|
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, |
|
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, |
|
{"title": "regression", "num_labels": 1, "dtype": torch.float}, |
|
] |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class.__name__ not in [ |
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES), |
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES), |
|
]: |
|
continue |
|
|
|
for problem_type in problem_types: |
|
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): |
|
config.problem_type = problem_type["title"] |
|
config.num_labels = problem_type["num_labels"] |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
if problem_type["num_labels"] > 1: |
|
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) |
|
|
|
inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) |
|
|
|
|
|
|
|
|
|
|
|
with warnings.catch_warnings(record=True) as warning_list: |
|
loss = model(**inputs).loss |
|
for w in warning_list: |
|
if "Using a target size that is different to the input size" in str(w.message): |
|
raise ValueError( |
|
f"Something is going wrong in the regression problem: intercepted {w.message}" |
|
) |
|
|
|
loss.backward() |
|
|
|
def test_load_with_mismatched_shapes(self): |
|
if not self.test_mismatched_shapes: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): |
|
continue |
|
|
|
with self.subTest(msg=f"Testing {model_class}"): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model = model_class(config) |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
with self.assertRaises(RuntimeError): |
|
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) |
|
with self.assertRaises(RuntimeError): |
|
new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10) |
|
|
|
logger = logging.get_logger("transformers.modeling_utils") |
|
|
|
with CaptureLogger(logger) as cl: |
|
new_model = AutoModelForSequenceClassification.from_pretrained( |
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
new_model.to(torch_device) |
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
logits = new_model(**inputs).logits |
|
self.assertEqual(logits.shape[1], 42) |
|
|
|
with CaptureLogger(logger) as cl: |
|
new_model_without_prefix = AutoModel.from_pretrained( |
|
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
input_ids = ids_tensor((2, 8), 10) |
|
new_model_without_prefix.to(torch_device) |
|
if self.is_encoder_decoder: |
|
new_model_without_prefix(input_ids, decoder_input_ids=input_ids) |
|
else: |
|
new_model_without_prefix(input_ids) |
|
|
|
def test_mismatched_shapes_have_properly_initialized_weights(self): |
|
if not self.test_mismatched_shapes: |
|
return |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES): |
|
continue |
|
|
|
with self.subTest(msg=f"Testing {model_class}"): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model = model_class(configs_no_init) |
|
model.save_pretrained(tmp_dir) |
|
|
|
|
|
with self.assertRaises(RuntimeError): |
|
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) |
|
|
|
logger = logging.get_logger("transformers.modeling_utils") |
|
|
|
with CaptureLogger(logger) as cl: |
|
new_model = AutoModelForSequenceClassification.from_pretrained( |
|
tmp_dir, num_labels=42, ignore_mismatched_sizes=True |
|
) |
|
self.assertIn("the shapes did not match", cl.out) |
|
|
|
for name, param in new_model.named_parameters(): |
|
if param.requires_grad: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self): |
|
|
|
class MyClass(PreTrainedModel): |
|
config_class = PretrainedConfig |
|
|
|
def __init__(self, config=None): |
|
super().__init__(config if config is not None else PretrainedConfig()) |
|
self.linear = nn.Linear(10, config.num_labels, bias=True) |
|
self.embedding = nn.Embedding(10, 10) |
|
self.std = 1 |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5)) |
|
if module.bias is not None: |
|
module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std) |
|
|
|
|
|
config = PretrainedConfig() |
|
config.num_labels = 3 |
|
model = MyClass(config=config) |
|
|
|
|
|
set_seed(0) |
|
config = PretrainedConfig() |
|
config.num_labels = 4 |
|
|
|
|
|
|
|
with ContextManagers([no_init_weights(True)]): |
|
target_model = MyClass(config=config) |
|
target_model.apply(target_model._initialize_weights) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
state_dict = model.state_dict() |
|
del state_dict["linear.weight"] |
|
|
|
model.config.save_pretrained(tmpdirname) |
|
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin")) |
|
|
|
set_seed(0) |
|
new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True) |
|
|
|
for key in new_model.state_dict().keys(): |
|
|
|
|
|
if key not in ["linear.weight", "linear.bias"]: |
|
max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key])) |
|
self.assertLessEqual( |
|
max_diff.item(), |
|
1e-6, |
|
msg=f"the weight values for `{key}` in `new_model` and `model` are not identical", |
|
) |
|
else: |
|
|
|
self.assertNotEqual( |
|
model.state_dict()[key].shape, |
|
new_model.state_dict()[key].shape, |
|
msg=f"the weight shapes for {key} in `model` and `new_model` should differ", |
|
) |
|
|
|
max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key])) |
|
self.assertLessEqual( |
|
max_diff.item(), |
|
1e-6, |
|
msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical", |
|
) |
|
|
|
def test_model_is_small(self): |
|
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
num_params = model.num_parameters() |
|
assert ( |
|
num_params < 1000000 |
|
), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max." |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
def test_flash_attn_2_conversion(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model = model_class.from_pretrained( |
|
tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2" |
|
).to(torch_device) |
|
|
|
for _, module in model.named_modules(): |
|
if "FlashAttention" in module.__class__.__name__: |
|
return |
|
|
|
self.assertTrue(False, "FlashAttention2 modules not found in model") |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
@is_flaky |
|
def test_flash_attn_2_inference_equivalence(self): |
|
for model_class in self.all_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model_fa = model_class.from_pretrained( |
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" |
|
) |
|
model_fa.to(torch_device) |
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) |
|
model.to(torch_device) |
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1] |
|
if dummy_input.dtype in [torch.float32, torch.float16]: |
|
dummy_input = dummy_input.to(torch.bfloat16) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None) |
|
|
|
if dummy_attention_mask is not None: |
|
dummy_attention_mask = dummy_attention_mask[:1] |
|
dummy_attention_mask[:, 1:] = 1 |
|
dummy_attention_mask[:, :1] = 0 |
|
|
|
if model.config.is_encoder_decoder: |
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] |
|
|
|
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) |
|
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) |
|
else: |
|
outputs = model(dummy_input, output_hidden_states=True) |
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True) |
|
|
|
logits = ( |
|
outputs.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs.decoder_hidden_states[-1] |
|
) |
|
logits_fa = ( |
|
outputs_fa.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs_fa.decoder_hidden_states[-1] |
|
) |
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) |
|
|
|
if model.config.is_encoder_decoder: |
|
other_inputs = { |
|
"decoder_input_ids": decoder_input_ids, |
|
"decoder_attention_mask": dummy_attention_mask, |
|
"output_hidden_states": True, |
|
} |
|
if dummy_attention_mask is not None: |
|
other_inputs["attention_mask"] = dummy_attention_mask |
|
|
|
outputs = model(dummy_input, **other_inputs) |
|
outputs_fa = model_fa(dummy_input, **other_inputs) |
|
else: |
|
other_inputs = { |
|
"output_hidden_states": True, |
|
} |
|
if dummy_attention_mask is not None: |
|
other_inputs["attention_mask"] = dummy_attention_mask |
|
|
|
outputs = model(dummy_input, **other_inputs) |
|
outputs_fa = model_fa(dummy_input, **other_inputs) |
|
|
|
logits = ( |
|
outputs.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs.decoder_hidden_states[-1] |
|
) |
|
logits_fa = ( |
|
outputs_fa.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs_fa.decoder_hidden_states[-1] |
|
) |
|
|
|
assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2) |
|
|
|
|
|
model.train() |
|
_ = model_fa(dummy_input, **other_inputs) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
@is_flaky |
|
def test_flash_attn_2_inference_equivalence_right_padding(self): |
|
for model_class in self.all_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model_fa = model_class.from_pretrained( |
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" |
|
) |
|
model_fa.to(torch_device) |
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16) |
|
model.to(torch_device) |
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1] |
|
if dummy_input.dtype in [torch.float32, torch.float16]: |
|
dummy_input = dummy_input.to(torch.bfloat16) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None) |
|
|
|
if dummy_attention_mask is not None: |
|
dummy_attention_mask = dummy_attention_mask[:1] |
|
dummy_attention_mask[:, :-1] = 1 |
|
dummy_attention_mask[:, -1:] = 0 |
|
|
|
if model.config.is_encoder_decoder: |
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1] |
|
|
|
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) |
|
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True) |
|
else: |
|
outputs = model(dummy_input, output_hidden_states=True) |
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True) |
|
|
|
logits = ( |
|
outputs.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs.decoder_hidden_states[-1] |
|
) |
|
logits_fa = ( |
|
outputs_fa.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs_fa.decoder_hidden_states[-1] |
|
) |
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2) |
|
|
|
if model.config.is_encoder_decoder: |
|
other_inputs = { |
|
"decoder_input_ids": decoder_input_ids, |
|
"decoder_attention_mask": dummy_attention_mask, |
|
"output_hidden_states": True, |
|
} |
|
if dummy_attention_mask is not None: |
|
other_inputs["attention_mask"] = dummy_attention_mask |
|
|
|
outputs = model(dummy_input, **other_inputs) |
|
outputs_fa = model_fa(dummy_input, **other_inputs) |
|
else: |
|
other_inputs = { |
|
"output_hidden_states": True, |
|
} |
|
if dummy_attention_mask is not None: |
|
other_inputs["attention_mask"] = dummy_attention_mask |
|
|
|
outputs = model(dummy_input, **other_inputs) |
|
outputs_fa = model_fa(dummy_input, **other_inputs) |
|
|
|
logits = ( |
|
outputs.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs.decoder_hidden_states[-1] |
|
) |
|
logits_fa = ( |
|
outputs_fa.hidden_states[-1] |
|
if not model.config.is_encoder_decoder |
|
else outputs_fa.decoder_hidden_states[-1] |
|
) |
|
|
|
assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
@is_flaky |
|
def test_flash_attn_2_generate_left_padding(self): |
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( |
|
torch_device |
|
) |
|
|
|
dummy_input = inputs_dict[model.main_input_name] |
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]: |
|
dummy_input = dummy_input.to(torch.float16) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) |
|
|
|
dummy_attention_mask[:, :-1] = 0 |
|
dummy_attention_mask[:, -1:] = 1 |
|
|
|
out = model.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False |
|
) |
|
|
|
model = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
).to(torch_device) |
|
|
|
out_fa = model.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False |
|
) |
|
|
|
self.assertTrue(torch.allclose(out, out_fa)) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@is_flaky |
|
@slow |
|
def test_flash_attn_2_generate_padding_right(self): |
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( |
|
torch_device |
|
) |
|
|
|
dummy_input = inputs_dict[model.main_input_name] |
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]: |
|
dummy_input = dummy_input.to(torch.float16) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) |
|
|
|
dummy_attention_mask[:, :-1] = 1 |
|
dummy_attention_mask[:, -1:] = 0 |
|
|
|
out = model.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False |
|
) |
|
|
|
model = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
).to(torch_device) |
|
|
|
out_fa = model.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False |
|
) |
|
|
|
self.assertTrue(torch.allclose(out, out_fa)) |
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) |
|
@require_torch_sdpa |
|
@slow |
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str): |
|
if not self.all_model_classes[0]._supports_sdpa: |
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA") |
|
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device): |
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)") |
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device): |
|
self.skipTest( |
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)" |
|
) |
|
|
|
|
|
if torch_dtype == "float16": |
|
torch_dtype = torch.float16 |
|
elif torch_dtype == "bfloat16": |
|
torch_dtype = torch.bfloat16 |
|
elif torch_dtype == "float32": |
|
torch_dtype = torch.float32 |
|
|
|
atols = { |
|
("cpu", False, torch.float32): 1e-6, |
|
("cpu", False, torch.bfloat16): 1e-2, |
|
("cpu", True, torch.float32): 1e-6, |
|
("cpu", True, torch.bfloat16): 1e-2, |
|
("cuda", False, torch.float32): 1e-6, |
|
("cuda", False, torch.bfloat16): 1e-2, |
|
("cuda", False, torch.float16): 5e-3, |
|
("cuda", True, torch.float32): 1e-6, |
|
("cuda", True, torch.bfloat16): 1e-2, |
|
("cuda", True, torch.float16): 5e-3, |
|
} |
|
rtols = { |
|
("cpu", False, torch.float32): 1e-4, |
|
("cpu", False, torch.bfloat16): 1e-2, |
|
("cpu", True, torch.float32): 1e-4, |
|
("cpu", True, torch.bfloat16): 1e-2, |
|
("cuda", False, torch.float32): 1e-4, |
|
("cuda", False, torch.bfloat16): 1e-2, |
|
("cuda", False, torch.float16): 5e-3, |
|
("cuda", True, torch.float32): 1e-4, |
|
("cuda", True, torch.bfloat16): 3e-2, |
|
("cuda", True, torch.float16): 5e-3, |
|
} |
|
|
|
def get_mean_reldiff(failcase, x, ref, atol, rtol): |
|
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}" |
|
|
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
|
|
is_encoder_decoder = model.config.is_encoder_decoder |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype) |
|
model_sdpa = model_sdpa.eval().to(torch_device) |
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") |
|
|
|
model_eager = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch_dtype, |
|
attn_implementation="eager", |
|
) |
|
model_eager = model_eager.eval().to(torch_device) |
|
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager") |
|
|
|
for name, submodule in model_eager.named_modules(): |
|
if "SdpaAttention" in submodule.__class__.__name__: |
|
raise ValueError("The eager model should not have SDPA attention layers") |
|
|
|
has_sdpa = False |
|
for name, submodule in model_sdpa.named_modules(): |
|
if "SdpaAttention" in submodule.__class__.__name__: |
|
has_sdpa = True |
|
break |
|
if not has_sdpa and model_sdpa.config.model_type != "falcon": |
|
raise ValueError("The SDPA model should have SDPA attention layers") |
|
|
|
|
|
|
|
fail_cases = [] |
|
for padding_side in ["left", "right"]: |
|
for use_mask in [False, True]: |
|
for batch_size in [1, 5]: |
|
dummy_input = inputs_dict[model.main_input_name] |
|
|
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: |
|
dummy_input = dummy_input.to(torch_dtype) |
|
|
|
dummy_input = dummy_input[:batch_size] |
|
if dummy_input.shape[0] != batch_size: |
|
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]: |
|
extension = torch.rand( |
|
batch_size - dummy_input.shape[0], |
|
*dummy_input.shape[1:], |
|
dtype=torch_dtype, |
|
device=torch_device, |
|
) |
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) |
|
else: |
|
extension = torch.randint( |
|
high=5, |
|
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]), |
|
dtype=dummy_input.dtype, |
|
device=torch_device, |
|
) |
|
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device) |
|
|
|
if not use_mask: |
|
dummy_attention_mask = None |
|
else: |
|
dummy_attention_mask = inputs_dict.get("attention_mask", None) |
|
if dummy_attention_mask is None: |
|
if is_encoder_decoder: |
|
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1] |
|
else: |
|
seqlen = dummy_input.shape[-1] |
|
dummy_attention_mask = ( |
|
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device) |
|
) |
|
|
|
dummy_attention_mask = dummy_attention_mask[:batch_size] |
|
if dummy_attention_mask.shape[0] != batch_size: |
|
extension = torch.ones( |
|
batch_size - dummy_attention_mask.shape[0], |
|
*dummy_attention_mask.shape[1:], |
|
dtype=dummy_attention_mask.dtype, |
|
device=torch_device, |
|
) |
|
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0) |
|
dummy_attention_mask = dummy_attention_mask.to(torch_device) |
|
|
|
dummy_attention_mask[:] = 1 |
|
if padding_side == "left": |
|
dummy_attention_mask[-1, :-1] = 1 |
|
dummy_attention_mask[-1, -4:] = 0 |
|
elif padding_side == "right": |
|
dummy_attention_mask[-1, 1:] = 1 |
|
dummy_attention_mask[-1, :3] = 0 |
|
|
|
for enable_kernels in [False, True]: |
|
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}" |
|
if is_encoder_decoder: |
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size] |
|
if decoder_input_ids.shape[0] != batch_size: |
|
extension = torch.ones( |
|
batch_size - decoder_input_ids.shape[0], |
|
*decoder_input_ids.shape[1:], |
|
dtype=decoder_input_ids.dtype, |
|
device=torch_device, |
|
) |
|
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0) |
|
decoder_input_ids = decoder_input_ids.to(torch_device) |
|
|
|
|
|
other_inputs = { |
|
"decoder_input_ids": decoder_input_ids, |
|
"decoder_attention_mask": dummy_attention_mask, |
|
"output_hidden_states": True, |
|
} |
|
else: |
|
other_inputs = { |
|
"output_hidden_states": True, |
|
} |
|
|
|
|
|
if "attention_mask" in inspect.signature(model_eager.forward).parameters: |
|
other_inputs["attention_mask"] = dummy_attention_mask |
|
|
|
|
|
with torch.no_grad(): |
|
with torch.backends.cuda.sdp_kernel( |
|
enable_flash=enable_kernels, |
|
enable_math=True, |
|
enable_mem_efficient=enable_kernels, |
|
): |
|
outputs_eager = model_eager(dummy_input, **other_inputs) |
|
outputs_sdpa = model_sdpa(dummy_input, **other_inputs) |
|
|
|
logits_eager = ( |
|
outputs_eager.hidden_states[-1] |
|
if not is_encoder_decoder |
|
else outputs_eager.decoder_hidden_states[-1] |
|
) |
|
logits_sdpa = ( |
|
outputs_sdpa.hidden_states[-1] |
|
if not is_encoder_decoder |
|
else outputs_sdpa.decoder_hidden_states[-1] |
|
) |
|
|
|
if torch_device in ["cpu", "cuda"]: |
|
atol = atols[torch_device, enable_kernels, torch_dtype] |
|
rtol = rtols[torch_device, enable_kernels, torch_dtype] |
|
else: |
|
atol = 1e-7 |
|
rtol = 1e-4 |
|
|
|
|
|
if use_mask: |
|
if padding_side == "left": |
|
sub_sdpa = logits_sdpa[:-1] |
|
sub_eager = logits_eager[:-1] |
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): |
|
fail_cases.append( |
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) |
|
) |
|
|
|
sub_sdpa = logits_sdpa[-1, :-4] |
|
sub_eager = logits_eager[-1, :-4] |
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): |
|
fail_cases.append( |
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
elif padding_side == "right": |
|
sub_sdpa = logits_sdpa[:-1] |
|
sub_eager = logits_eager[:-1] |
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): |
|
fail_cases.append( |
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) |
|
) |
|
|
|
sub_sdpa = logits_sdpa[-1, 3:] |
|
sub_eager = logits_eager[-1, 3:] |
|
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol): |
|
fail_cases.append( |
|
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol): |
|
fail_cases.append( |
|
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol) |
|
) |
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases)) |
|
|
|
@require_torch_sdpa |
|
@require_torch_gpu |
|
@slow |
|
def test_sdpa_can_dispatch_on_flash(self): |
|
compute_capability = torch.cuda.get_device_capability() |
|
major, _ = compute_capability |
|
|
|
if not torch.version.cuda or major < 8: |
|
self.skipTest("This test requires an NVIDIA GPU with compute capability >= 8.0") |
|
|
|
for model_class in self.all_model_classes: |
|
if not model_class._supports_sdpa: |
|
self.skipTest(f"{model_class.__name__} does not support SDPA") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
if config.model_type in ["llava", "llava_next", "vipllava"]: |
|
self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input") |
|
if config.model_type in ["idefics"]: |
|
self.skipTest("Idefics currently (transformers==4.39.1) requires an image_attention_mask input") |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa") |
|
model.to(torch_device) |
|
|
|
inputs_dict.pop("attention_mask", None) |
|
inputs_dict.pop("decoder_attention_mask", None) |
|
|
|
for name, inp in inputs_dict.items(): |
|
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]: |
|
inputs_dict[name] = inp.to(torch.float16) |
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): |
|
_ = model(**inputs_dict) |
|
|
|
@require_torch_sdpa |
|
@slow |
|
def test_eager_matches_sdpa_generate(self): |
|
max_new_tokens = 30 |
|
|
|
if len(self.all_generative_model_classes) == 0: |
|
self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test") |
|
|
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_sdpa: |
|
self.skipTest(f"{model_class.__name__} does not support SDPA") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
dummy_input = inputs_dict[model_class.main_input_name] |
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]: |
|
dummy_input = dummy_input.to(torch.float16) |
|
|
|
|
|
if hasattr(config, "max_position_embeddings"): |
|
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 |
|
|
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) |
|
|
|
model_sdpa = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(torch_device) |
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") |
|
|
|
model_eager = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
attn_implementation="eager", |
|
).to(torch_device) |
|
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager") |
|
|
|
for name, submodule in model_eager.named_modules(): |
|
if "SdpaAttention" in submodule.__class__.__name__: |
|
raise ValueError("The eager model should not have SDPA attention layers") |
|
|
|
has_sdpa = False |
|
for name, submodule in model_sdpa.named_modules(): |
|
if "SdpaAttention" in submodule.__class__.__name__: |
|
has_sdpa = True |
|
break |
|
if not has_sdpa: |
|
raise ValueError("The SDPA model should have SDPA attention layers") |
|
|
|
|
|
res_eager = model_eager.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False |
|
) |
|
|
|
res_sdpa = model_sdpa.generate( |
|
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False |
|
) |
|
|
|
self.assertTrue(torch.allclose(res_eager, res_sdpa)) |
|
|
|
@require_torch_sdpa |
|
def test_sdpa_matches_eager_sliding_window(self): |
|
WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"] |
|
|
|
if len(self.all_generative_model_classes) == 0: |
|
self.skipTest(f"No generative model classes for {self.__class__.__name__}") |
|
|
|
for model_class in self.all_generative_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
if config.model_type not in WINDOW_ATTENTION_MODELS: |
|
self.skipTest(f"{config.model_type} does not use window attention") |
|
|
|
config.sliding_window = 2 |
|
|
|
dummy_input = inputs_dict[model_class.main_input_name] |
|
attention_mask = inputs_dict["attention_mask"] |
|
|
|
self.assertTrue(dummy_input.ndim == 2) |
|
self.assertTrue(dummy_input.shape[1] > 6) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
with torch.device(torch_device): |
|
model_eager = AutoModelForCausalLM.from_config( |
|
config, attn_implementation="eager", torch_dtype=torch.float32 |
|
) |
|
|
|
model_eager.save_pretrained(tmpdir) |
|
|
|
with torch.device(torch_device): |
|
model_sdpa = AutoModelForCausalLM.from_pretrained( |
|
tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32 |
|
) |
|
|
|
model_eager = model_eager.eval() |
|
model_sdpa = model_sdpa.eval() |
|
|
|
with torch.no_grad(): |
|
with torch.backends.cuda.sdp_kernel( |
|
enable_flash=False, |
|
enable_math=True, |
|
enable_mem_efficient=False, |
|
): |
|
res_eager = model_eager(**inputs_dict, return_dict=False)[0] |
|
res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0] |
|
|
|
|
|
self.assertTrue( |
|
torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4) |
|
) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
def test_flash_attn_2_generate_use_cache(self): |
|
max_new_tokens = 30 |
|
|
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
dummy_input = inputs_dict[model_class.main_input_name] |
|
if dummy_input.dtype in [torch.float32, torch.bfloat16]: |
|
dummy_input = dummy_input.to(torch.float16) |
|
|
|
|
|
if hasattr(config, "max_position_embeddings"): |
|
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 |
|
|
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) |
|
|
|
model = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
).to(torch_device) |
|
|
|
|
|
_ = model.generate( |
|
dummy_input, |
|
attention_mask=dummy_attention_mask, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False, |
|
use_cache=True, |
|
) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@require_bitsandbytes |
|
@mark.flash_attn_test |
|
@slow |
|
def test_flash_attn_2_fp32_ln(self): |
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
model = model_class(config) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
|
|
dummy_input = inputs_dict[model.main_input_name] |
|
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) |
|
batch_size = dummy_attention_mask.shape[0] |
|
|
|
is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size |
|
|
|
|
|
if is_padding_right: |
|
dummy_attention_mask = torch.ones_like(dummy_input) |
|
|
|
model = model_class.from_pretrained( |
|
tmpdirname, |
|
torch_dtype=torch.float16, |
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
load_in_4bit=True, |
|
) |
|
|
|
for _, param in model.named_parameters(): |
|
|
|
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16): |
|
param.data = param.data.to(torch.float32) |
|
|
|
if model.config.is_encoder_decoder: |
|
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"] |
|
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"] |
|
|
|
_ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids) |
|
|
|
_ = model( |
|
dummy_input, |
|
attention_mask=dummy_attention_mask, |
|
decoder_input_ids=dummy_decoder_input_ids, |
|
decoder_attention_mask=dummy_decoder_attention_mask, |
|
) |
|
else: |
|
_ = model(dummy_input) |
|
|
|
_ = model(dummy_input, attention_mask=dummy_attention_mask) |
|
|
|
@is_pt_tf_cross_test |
|
def test_tf_from_pt_safetensors(self): |
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
tf_model_class_name = "TF" + model_class.__name__ |
|
if not hasattr(transformers, tf_model_class_name): |
|
|
|
return |
|
|
|
tf_model_class = getattr(transformers, tf_model_class_name) |
|
|
|
pt_model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname, safe_serialization=True) |
|
tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
pt_model.save_pretrained(tmpdirname, safe_serialization=False) |
|
tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
|
|
for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights): |
|
self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) |
|
|
|
@is_pt_flax_cross_test |
|
def test_flax_from_pt_safetensors(self): |
|
for model_class in self.all_model_classes: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
flax_model_class_name = "Flax" + model_class.__name__ |
|
if not hasattr(transformers, flax_model_class_name): |
|
|
|
return |
|
|
|
flax_model_class = getattr(transformers, flax_model_class_name) |
|
|
|
pt_model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pt_model.save_pretrained(tmpdirname, safe_serialization=True) |
|
flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
pt_model.save_pretrained(tmpdirname, safe_serialization=False) |
|
flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True) |
|
|
|
|
|
self.assertTrue(check_models_equal(flax_model_1, flax_model_2)) |
|
|
|
@require_flash_attn |
|
@require_torch_gpu |
|
@mark.flash_attn_test |
|
@slow |
|
def test_flash_attn_2_from_config(self): |
|
for model_class in self.all_generative_model_classes: |
|
if not model_class._supports_flash_attn_2: |
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2") |
|
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
fa2_model = AutoModelForCausalLM.from_config( |
|
config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16 |
|
).to(torch_device) |
|
|
|
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device) |
|
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device) |
|
|
|
fa2_correctly_converted = False |
|
|
|
for _, module in fa2_model.named_modules(): |
|
if "FlashAttention" in module.__class__.__name__: |
|
fa2_correctly_converted = True |
|
break |
|
|
|
self.assertTrue(fa2_correctly_converted) |
|
|
|
_ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
fa2_model.save_pretrained(tmpdirname) |
|
|
|
model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname) |
|
|
|
self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2") |
|
|
|
fa2_correctly_converted = False |
|
|
|
for _, module in model_from_pretrained.named_modules(): |
|
if "FlashAttention" in module.__class__.__name__: |
|
fa2_correctly_converted = True |
|
break |
|
|
|
self.assertFalse(fa2_correctly_converted) |
|
|
|
|
|
global_rng = random.Random() |
|
|
|
|
|
def ids_tensor(shape, vocab_size, rng=None, name=None): |
|
|
|
if rng is None: |
|
rng = global_rng |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.randint(0, vocab_size - 1)) |
|
|
|
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous() |
|
|
|
|
|
def random_attention_mask(shape, rng=None, name=None): |
|
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None) |
|
|
|
|
|
attn_mask[:, 0] = 1 |
|
return attn_mask |
|
|
|
|
|
def floats_tensor(shape, scale=1.0, rng=None, name=None): |
|
"""Creates a random float32 tensor""" |
|
if rng is None: |
|
rng = global_rng |
|
|
|
total_dims = 1 |
|
for dim in shape: |
|
total_dims *= dim |
|
|
|
values = [] |
|
for _ in range(total_dims): |
|
values.append(rng.random() * scale) |
|
|
|
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous() |
|
|