|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import itertools |
|
import json |
|
import os |
|
import pickle |
|
import re |
|
import shutil |
|
import tempfile |
|
import traceback |
|
import unittest |
|
from collections import OrderedDict |
|
from itertools import takewhile |
|
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union |
|
|
|
from parameterized import parameterized |
|
|
|
from transformers import ( |
|
AlbertTokenizer, |
|
AlbertTokenizerFast, |
|
BertTokenizer, |
|
BertTokenizerFast, |
|
PreTrainedTokenizer, |
|
PreTrainedTokenizerBase, |
|
PreTrainedTokenizerFast, |
|
SpecialTokensMixin, |
|
Trainer, |
|
TrainingArguments, |
|
is_flax_available, |
|
is_tf_available, |
|
is_torch_available, |
|
logging, |
|
) |
|
from transformers.testing_utils import ( |
|
check_json_file_has_correct_format, |
|
get_tests_dir, |
|
is_pt_tf_cross_test, |
|
require_jinja, |
|
require_read_token, |
|
require_tf, |
|
require_tokenizers, |
|
require_torch, |
|
run_test_in_subprocess, |
|
slow, |
|
) |
|
from transformers.tokenization_utils import AddedToken |
|
|
|
|
|
if is_torch_available(): |
|
import torch.nn as nn |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"] |
|
|
|
SMALL_TRAINING_CORPUS = [ |
|
["This is the first sentence.", "This is the second one."], |
|
["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."], |
|
] |
|
|
|
|
|
def filter_non_english(_, pretrained_name: str): |
|
"""Filter all the model for non-english language""" |
|
return not any(lang in pretrained_name for lang in NON_ENGLISH_TAGS) |
|
|
|
|
|
def filter_roberta_detectors(_, pretrained_name: str): |
|
return "detector" not in pretrained_name |
|
|
|
|
|
def merge_model_tokenizer_mappings( |
|
model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], |
|
tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]], |
|
) -> Dict[ |
|
Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"], |
|
Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]], |
|
]: |
|
configurations = list(model_mapping.keys()) |
|
model_tokenizer_mapping = OrderedDict([]) |
|
|
|
for configuration in configurations: |
|
if configuration in model_mapping and configuration in tokenizer_mapping: |
|
model = model_mapping[configuration] |
|
tokenizer = tokenizer_mapping[configuration][0] |
|
tokenizer_fast = tokenizer_mapping[configuration][1] |
|
|
|
if tokenizer is not None: |
|
if configuration.__name__.startswith(tokenizer.__name__.replace("Tokenizer", "")): |
|
model_tokenizer_mapping.update({tokenizer: (configuration, model)}) |
|
if tokenizer_fast is not None: |
|
if configuration.__name__.startswith(tokenizer_fast.__name__.replace("TokenizerFast", "")): |
|
model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)}) |
|
|
|
return model_tokenizer_mapping |
|
|
|
|
|
def _test_subword_regularization_tokenizer(in_queue, out_queue, timeout): |
|
error = None |
|
|
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
tokenizer = inputs["tokenizer"] |
|
sp_model_kwargs = inputs["sp_model_kwargs"] |
|
test_sentencepiece_ignore_case = inputs["test_sentencepiece_ignore_case"] |
|
|
|
unittest.TestCase().assertTrue(hasattr(tokenizer, "sp_model_kwargs")) |
|
unittest.TestCase().assertIsNotNone(tokenizer.sp_model_kwargs) |
|
unittest.TestCase().assertTrue(isinstance(tokenizer.sp_model_kwargs, dict)) |
|
unittest.TestCase().assertDictEqual(tokenizer.sp_model_kwargs, sp_model_kwargs) |
|
check_subword_sampling(tokenizer, test_sentencepiece_ignore_case=test_sentencepiece_ignore_case) |
|
|
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
def check_subword_sampling( |
|
tokenizer: PreTrainedTokenizer, |
|
text: str = None, |
|
test_sentencepiece_ignore_case: bool = True, |
|
) -> None: |
|
""" |
|
Check if the tokenizer generates different results when subword regularization is enabled. |
|
|
|
Subword regularization augments training data with subword sampling. |
|
This has a random component. |
|
|
|
Args: |
|
tokenizer: The tokenizer to check. |
|
text: The text to use for the checks. |
|
test_sentencepiece_ignore_case: See `TokenizerTesterMixin.test_sentencepiece_ignore_case`. |
|
""" |
|
text = "This is a test for subword regularization." if text is None else text |
|
if test_sentencepiece_ignore_case: |
|
text = text.lower() |
|
|
|
tokens_list = [] |
|
for _ in range(5): |
|
tokens_list.append(tokenizer.tokenize(text)) |
|
|
|
|
|
combinations = itertools.combinations(tokens_list, 2) |
|
|
|
|
|
subword_sampling_found = False |
|
for combination in combinations: |
|
if combination[0] != combination[1]: |
|
subword_sampling_found = True |
|
unittest.TestCase().assertTrue(subword_sampling_found) |
|
|
|
|
|
for tokens in tokens_list: |
|
if test_sentencepiece_ignore_case: |
|
unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower()) |
|
else: |
|
unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens)) |
|
|
|
|
|
class TokenizerTesterMixin: |
|
tokenizer_class = None |
|
rust_tokenizer_class = None |
|
test_slow_tokenizer = True |
|
test_rust_tokenizer = True |
|
space_between_special_tokens = False |
|
from_pretrained_kwargs = None |
|
from_pretrained_filter = None |
|
from_pretrained_id = None |
|
from_pretrained_vocab_key = "vocab_file" |
|
test_seq2seq = True |
|
|
|
|
|
test_sentencepiece = False |
|
|
|
|
|
|
|
test_sentencepiece_ignore_case = False |
|
|
|
def setUp(self) -> None: |
|
|
|
|
|
self.from_pretrained_id = ( |
|
[self.from_pretrained_id] if isinstance(self.from_pretrained_id, str) else self.from_pretrained_id |
|
) |
|
|
|
self.tokenizers_list = [] |
|
if self.test_rust_tokenizer: |
|
self.tokenizers_list = [ |
|
( |
|
self.rust_tokenizer_class, |
|
pretrained_id, |
|
self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {}, |
|
) |
|
for pretrained_id in self.from_pretrained_id |
|
] |
|
else: |
|
self.tokenizers_list = [] |
|
with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data: |
|
self._data = f_data.read().replace("\n\n", "\n").strip() |
|
|
|
self.tmpdirname = tempfile.mkdtemp() |
|
|
|
def tearDown(self): |
|
shutil.rmtree(self.tmpdirname) |
|
|
|
def get_input_output_texts(self, tokenizer): |
|
input_txt = self.get_clean_sequence(tokenizer)[0] |
|
return input_txt, input_txt |
|
|
|
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: |
|
|
|
toks = [ |
|
(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in set(tokenizer.get_vocab().values()) |
|
] |
|
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) |
|
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) |
|
if max_length is not None and len(toks) > max_length: |
|
toks = toks[:max_length] |
|
if min_length is not None and len(toks) < min_length and len(toks) > 0: |
|
while len(toks) < min_length: |
|
toks = toks + toks |
|
|
|
toks_ids = [t[0] for t in toks] |
|
|
|
|
|
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) |
|
if " " not in output_txt and len(toks_ids) > 1: |
|
output_txt = ( |
|
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) |
|
+ " " |
|
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) |
|
) |
|
if with_prefix_space: |
|
output_txt = " " + output_txt |
|
output_ids = tokenizer.encode(output_txt, add_special_tokens=False) |
|
return output_txt, output_ids |
|
|
|
def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]: |
|
if fast and self.test_rust_tokenizer and self.test_slow_tokenizer: |
|
return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)] |
|
elif fast and self.test_rust_tokenizer: |
|
return [self.get_rust_tokenizer(**kwargs)] |
|
elif self.test_slow_tokenizer: |
|
return [self.get_tokenizer(**kwargs)] |
|
else: |
|
raise ValueError("This tokenizer class has no tokenizer to be tested.") |
|
|
|
def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: |
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: |
|
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def tokenizer_integration_test_util( |
|
self, |
|
expected_encoding: Dict, |
|
model_name: str, |
|
revision: str = None, |
|
sequences: List[str] = None, |
|
decode_kwargs: Dict[str, Any] = None, |
|
padding: bool = True, |
|
): |
|
""" |
|
Util for integration test. |
|
|
|
Text is tokenized and then reverted back to text. Both results are then checked. |
|
|
|
Args: |
|
expected_encoding: |
|
The expected result of the tokenizer output. |
|
model_name: |
|
The model name of the tokenizer to load and use. |
|
revision: |
|
The full git revision number of the model. This is to pin the |
|
tokenizer config and to avoid that tests start to fail if the |
|
config gets changed upstream. |
|
sequences: |
|
Can overwrite the texts that are used to check the tokenizer. |
|
This is useful if the tokenizer supports non english languages |
|
like france. |
|
decode_kwargs: |
|
Additional args for the ``decode`` function which reverts the |
|
tokenized text back to a string. |
|
padding: |
|
Activates and controls padding of the tokenizer. |
|
""" |
|
decode_kwargs = {} if decode_kwargs is None else decode_kwargs |
|
|
|
if sequences is None: |
|
sequences = [ |
|
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " |
|
"general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural " |
|
"Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained " |
|
"models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.", |
|
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " |
|
"conditioning on both left and right context in all layers.", |
|
"The quick brown fox jumps over the lazy dog.", |
|
] |
|
|
|
if self.test_sentencepiece_ignore_case: |
|
sequences = [sequence.lower() for sequence in sequences] |
|
|
|
tokenizer_classes = [self.tokenizer_class] |
|
if self.test_rust_tokenizer: |
|
tokenizer_classes.append(self.rust_tokenizer_class) |
|
|
|
for tokenizer_class in tokenizer_classes: |
|
tokenizer = tokenizer_class.from_pretrained( |
|
model_name, |
|
revision=revision, |
|
) |
|
|
|
encoding = tokenizer(sequences, padding=padding) |
|
decoded_sequences = [ |
|
tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"] |
|
] |
|
|
|
encoding_data = encoding.data |
|
self.assertDictEqual(encoding_data, expected_encoding) |
|
|
|
for expected, decoded in zip(sequences, decoded_sequences): |
|
if self.test_sentencepiece_ignore_case: |
|
expected = expected.lower() |
|
self.assertEqual(expected, decoded) |
|
|
|
def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int): |
|
|
|
self.assertEqual(len(input_r), max_length) |
|
self.assertEqual(len(input_p), max_length) |
|
|
|
|
|
padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r))) |
|
padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p))) |
|
self.assertSequenceEqual(padded_tokens_r, padded_tokens_p) |
|
|
|
def assert_batch_padded_input_match( |
|
self, |
|
input_r: dict, |
|
input_p: dict, |
|
max_length: int, |
|
pad_token_id: int, |
|
model_main_input_name: str = "input_ids", |
|
): |
|
for i_r in input_r.values(): |
|
( |
|
self.assertEqual(len(i_r), 2), |
|
self.assertEqual(len(i_r[0]), max_length), |
|
self.assertEqual(len(i_r[1]), max_length), |
|
) |
|
( |
|
self.assertEqual(len(i_r), 2), |
|
self.assertEqual(len(i_r[0]), max_length), |
|
self.assertEqual(len(i_r[1]), max_length), |
|
) |
|
|
|
for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]): |
|
self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id) |
|
|
|
for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]): |
|
self.assertSequenceEqual(i_r, i_p) |
|
|
|
@staticmethod |
|
def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences): |
|
|
|
|
|
return [ |
|
{value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()} |
|
for i in range(len(batch_encode_plus_sequences["input_ids"])) |
|
] |
|
|
|
|
|
def test_tokenize_special_tokens(self): |
|
"""Test `tokenize` with special tokens.""" |
|
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]" |
|
SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]" |
|
|
|
|
|
tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) |
|
tokenizer.add_special_tokens( |
|
{"additional_special_tokens": [SPECIAL_TOKEN_2]}, replace_additional_special_tokens=False |
|
) |
|
|
|
token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) |
|
token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) |
|
|
|
self.assertEqual(len(token_1), 1) |
|
self.assertEqual(len(token_2), 1) |
|
self.assertEqual(token_1[0], SPECIAL_TOKEN_1) |
|
|
|
|
|
|
|
|
|
def test_sentencepiece_tokenize_and_convert_tokens_to_string(self): |
|
"""Test ``_tokenize`` and ``convert_tokens_to_string``.""" |
|
if not self.test_sentencepiece: |
|
return |
|
|
|
tokenizer = self.get_tokenizer() |
|
text = "This is text to test the tokenizer." |
|
|
|
if self.test_sentencepiece_ignore_case: |
|
text = text.lower() |
|
|
|
tokens = tokenizer.tokenize(text) |
|
|
|
self.assertTrue(len(tokens) > 0) |
|
|
|
|
|
reverse_text = tokenizer.convert_tokens_to_string(tokens) |
|
|
|
if self.test_sentencepiece_ignore_case: |
|
reverse_text = reverse_text.lower() |
|
|
|
self.assertEqual(reverse_text, text) |
|
|
|
special_tokens = tokenizer.all_special_tokens |
|
special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens) |
|
for special_token in special_tokens: |
|
self.assertIn(special_token, special_tokens_string) |
|
|
|
if self.test_rust_tokenizer: |
|
rust_tokenizer = self.get_rust_tokenizer() |
|
special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens) |
|
self.assertEqual(special_tokens_string, special_tokens_string_rust) |
|
|
|
def test_sentencepiece_tokenize_and_decode(self): |
|
if not self.test_sentencepiece: |
|
return |
|
|
|
text = "This is text to test the tokenizer." |
|
if self.test_rust_tokenizer: |
|
tokenizer = self.get_tokenizer() |
|
rust_tokenizer = self.get_rust_tokenizer() |
|
|
|
slow_ids = tokenizer(text).input_ids |
|
fast_ids = rust_tokenizer(text).input_ids |
|
self.assertEqual(slow_ids, fast_ids) |
|
|
|
slow_decoded = tokenizer.decode(slow_ids) |
|
fast_decoded = rust_tokenizer.decode(slow_ids) |
|
self.assertEqual(slow_decoded, fast_decoded) |
|
|
|
def test_subword_regularization_tokenizer(self) -> None: |
|
if not self.test_sentencepiece: |
|
return |
|
|
|
|
|
sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} |
|
tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) |
|
|
|
run_test_in_subprocess( |
|
test_case=self, |
|
target_func=_test_subword_regularization_tokenizer, |
|
inputs={ |
|
"tokenizer": tokenizer, |
|
"sp_model_kwargs": sp_model_kwargs, |
|
"test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case, |
|
}, |
|
) |
|
|
|
def test_pickle_subword_regularization_tokenizer(self) -> None: |
|
if not self.test_sentencepiece: |
|
return |
|
|
|
"""Google pickle __getstate__ __setstate__ if you are struggling with this.""" |
|
|
|
sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1} |
|
tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs) |
|
tokenizer_bin = pickle.dumps(tokenizer) |
|
del tokenizer |
|
tokenizer_new = pickle.loads(tokenizer_bin) |
|
|
|
run_test_in_subprocess( |
|
test_case=self, |
|
target_func=_test_subword_regularization_tokenizer, |
|
inputs={ |
|
"tokenizer": tokenizer_new, |
|
"sp_model_kwargs": sp_model_kwargs, |
|
"test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case, |
|
}, |
|
) |
|
|
|
def test_save_sentencepiece_tokenizer(self) -> None: |
|
if not self.test_sentencepiece or not self.test_slow_tokenizer: |
|
return |
|
|
|
|
|
text = "This is text to test the tokenizer." |
|
|
|
tokenizer_slow_1 = self.get_tokenizer() |
|
encoding_tokenizer_slow_1 = tokenizer_slow_1(text) |
|
|
|
tmpdirname_1 = tempfile.mkdtemp() |
|
tmpdirname_2 = tempfile.mkdtemp() |
|
|
|
tokenizer_slow_1.save_pretrained(tmpdirname_1) |
|
tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1) |
|
encoding_tokenizer_slow_2 = tokenizer_slow_2(text) |
|
|
|
shutil.rmtree(tmpdirname_1) |
|
tokenizer_slow_2.save_pretrained(tmpdirname_2) |
|
|
|
tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2) |
|
encoding_tokenizer_slow_3 = tokenizer_slow_3(text) |
|
shutil.rmtree(tmpdirname_2) |
|
|
|
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2) |
|
self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3) |
|
|
|
def test_model_input_names_signature(self): |
|
accepted_model_main_input_names = [ |
|
"input_ids", |
|
"input_values", |
|
] |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
|
|
|
|
self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names) |
|
|
|
def test_rust_tokenizer_signature(self): |
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
signature = inspect.signature(self.rust_tokenizer_class.__init__) |
|
|
|
self.assertIn("tokenizer_file", signature.parameters) |
|
self.assertIsNone(signature.parameters["tokenizer_file"].default) |
|
|
|
def test_tokenizer_slow_store_full_signature(self): |
|
if not self.test_slow_tokenizer: |
|
return |
|
|
|
signature = inspect.signature(self.tokenizer_class.__init__) |
|
tokenizer = self.get_tokenizer() |
|
|
|
for parameter_name, parameter in signature.parameters.items(): |
|
if parameter.default != inspect.Parameter.empty: |
|
self.assertIn(parameter_name, tokenizer.init_kwargs) |
|
|
|
def test_tokenizer_fast_store_full_signature(self): |
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
signature = inspect.signature(self.rust_tokenizer_class.__init__) |
|
tokenizer = self.get_rust_tokenizer() |
|
|
|
for parameter_name, parameter in signature.parameters.items(): |
|
if parameter.default != inspect.Parameter.empty and parameter_name not in [ |
|
"vocab_file", |
|
"merges_file", |
|
"tokenizer_file", |
|
]: |
|
self.assertIn(parameter_name, tokenizer.init_kwargs) |
|
|
|
def test_rust_and_python_full_tokenizers(self): |
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
tokenizer = self.get_tokenizer() |
|
rust_tokenizer = self.get_rust_tokenizer() |
|
|
|
sequence, _ = self.get_input_output_texts(tokenizer) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False) |
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) |
|
self.assertListEqual(ids, rust_ids) |
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=True) |
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True) |
|
self.assertListEqual(ids, rust_ids) |
|
|
|
def test_tokenizers_common_properties(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
attributes_list = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
] |
|
for attr in attributes_list: |
|
self.assertTrue(hasattr(tokenizer, attr)) |
|
self.assertTrue(hasattr(tokenizer, attr + "_id")) |
|
|
|
self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) |
|
self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids")) |
|
|
|
attributes_list = [ |
|
"model_max_length", |
|
"init_inputs", |
|
"init_kwargs", |
|
] |
|
if not isinstance(tokenizer, PreTrainedTokenizerFast): |
|
attributes_list += [ |
|
"added_tokens_encoder", |
|
"added_tokens_decoder", |
|
] |
|
for attr in attributes_list: |
|
self.assertTrue(hasattr(tokenizer, attr)) |
|
|
|
def test_tokenizers_common_ids_setters(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
attributes_list = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
] |
|
|
|
vocab = tokenizer.get_vocab() |
|
token_id_to_test_setters = next(iter(vocab.values())) |
|
token_to_test_setters = tokenizer.convert_ids_to_tokens( |
|
token_id_to_test_setters, skip_special_tokens=False |
|
) |
|
|
|
for attr in attributes_list: |
|
setattr(tokenizer, attr + "_id", None) |
|
self.assertEqual(getattr(tokenizer, attr), None) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), None) |
|
|
|
setattr(tokenizer, attr + "_id", token_id_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) |
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) |
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters]) |
|
|
|
@parameterized.expand([(True,), (False,)]) |
|
def test_tokenizers_special_tokens_properties_unset(self, verbose): |
|
tokenizers = self.get_tokenizers(verbose=verbose) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
attributes_list = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
"additional_special_tokens", |
|
] |
|
for attr in attributes_list: |
|
setattr(tokenizer, attr, None) |
|
self.assertIsNone(getattr(tokenizer, attr)) |
|
|
|
def test_save_and_load_tokenizer(self): |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
self.assertNotEqual(tokenizer.model_max_length, 42) |
|
|
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
before_vocab = tokenizer.get_vocab() |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
after_vocab = after_tokenizer.get_vocab() |
|
self.assertListEqual(before_tokens, after_tokens) |
|
self.assertDictEqual(before_vocab, after_vocab) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
tokenizers = self.get_tokenizers(model_max_length=42) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
tokenizer.add_tokens(["bim", "bambam"]) |
|
additional_special_tokens = tokenizer.additional_special_tokens |
|
additional_special_tokens.append("new_additional_special_token") |
|
tokenizer.add_special_tokens( |
|
{"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False |
|
) |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
before_vocab = tokenizer.get_vocab() |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
after_vocab = after_tokenizer.get_vocab() |
|
self.assertListEqual(before_tokens, after_tokens) |
|
|
|
self.assertDictEqual(before_vocab, after_vocab) |
|
self.assertIn("bim", after_vocab) |
|
self.assertIn("bambam", after_vocab) |
|
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) |
|
self.assertEqual(after_tokenizer.model_max_length, 42) |
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) |
|
self.assertEqual(tokenizer.model_max_length, 43) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
|
|
tokenizers = self.get_tokenizers(model_max_length=42) |
|
for tokenizer in tokenizers: |
|
if not tokenizer.is_fast: |
|
continue |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
tokenizer.add_tokens(["bim", "bambam"]) |
|
additional_special_tokens = tokenizer.additional_special_tokens |
|
additional_special_tokens.append("new_additional_special_token") |
|
tokenizer.add_special_tokens( |
|
{"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False |
|
) |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
before_vocab = tokenizer.get_vocab() |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
after_vocab = after_tokenizer.get_vocab() |
|
self.assertListEqual(before_tokens, after_tokens) |
|
self.assertDictEqual(before_vocab, after_vocab) |
|
self.assertIn("bim", after_vocab) |
|
self.assertIn("bambam", after_vocab) |
|
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) |
|
self.assertEqual(after_tokenizer.model_max_length, 42) |
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) |
|
self.assertEqual(tokenizer.model_max_length, 43) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
def test_pickle_tokenizer(self): |
|
"""Google pickle __getstate__ __setstate__ if you are struggling with this.""" |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
self.assertIsNotNone(tokenizer) |
|
|
|
text = "Munich and Berlin are nice cities" |
|
subwords = tokenizer.tokenize(text) |
|
|
|
filename = os.path.join(self.tmpdirname, "tokenizer.bin") |
|
with open(filename, "wb") as handle: |
|
pickle.dump(tokenizer, handle) |
|
|
|
with open(filename, "rb") as handle: |
|
tokenizer_new = pickle.load(handle) |
|
|
|
subwords_loaded = tokenizer_new.tokenize(text) |
|
|
|
self.assertListEqual(subwords, subwords_loaded) |
|
|
|
@require_tokenizers |
|
def test_pickle_added_tokens(self): |
|
tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True) |
|
tok2 = pickle.loads(pickle.dumps(tok1)) |
|
|
|
self.assertEqual(tok1.__getstate__(), tok2.__getstate__()) |
|
|
|
def test_added_tokens_do_lower_case(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case: |
|
continue |
|
|
|
special_token = tokenizer.all_special_tokens[0] |
|
|
|
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token |
|
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token |
|
|
|
toks_before_adding = tokenizer.tokenize(text) |
|
|
|
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] |
|
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks]) |
|
|
|
toks_after_adding = tokenizer.tokenize(text) |
|
toks_after_adding2 = tokenizer.tokenize(text2) |
|
|
|
|
|
|
|
self.assertIn(added, [2, 4]) |
|
|
|
self.assertListEqual(toks_after_adding, toks_after_adding2) |
|
self.assertTrue( |
|
len(toks_before_adding) > len(toks_after_adding), |
|
) |
|
|
|
|
|
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B" |
|
|
|
|
|
|
|
tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens)) |
|
|
|
for special_token in tokenizer.all_special_tokens: |
|
self.assertTrue(special_token in tokenized_sequence or special_token.lower() in tokenized_sequence) |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case: |
|
continue |
|
|
|
special_token = tokenizer.all_special_tokens[0] |
|
|
|
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token |
|
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token |
|
|
|
toks_before_adding = tokenizer.tokenize(text) |
|
|
|
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] |
|
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks]) |
|
self.assertIn(added, [2, 4]) |
|
|
|
toks_after_adding = tokenizer.tokenize(text) |
|
toks_after_adding2 = tokenizer.tokenize(text2) |
|
|
|
self.assertEqual(len(toks_after_adding), len(toks_after_adding2)) |
|
self.assertNotEqual( |
|
toks_after_adding[1], toks_after_adding2[1] |
|
) |
|
self.assertTrue( |
|
len(toks_before_adding) > len(toks_after_adding), |
|
) |
|
|
|
|
|
def test_add_tokens_tokenizer(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
vocab_size = tokenizer.vocab_size |
|
all_size = len(tokenizer) |
|
|
|
self.assertNotEqual(vocab_size, 0) |
|
|
|
|
|
|
|
|
|
|
|
new_toks = [ |
|
AddedToken("aaaaa bbbbbb", rstrip=True, lstrip=True), |
|
AddedToken("cccccccccdddddddd", rstrip=True, lstrip=True), |
|
] |
|
added_toks = tokenizer.add_tokens(new_toks) |
|
vocab_size_2 = tokenizer.vocab_size |
|
all_size_2 = len(tokenizer) |
|
|
|
self.assertNotEqual(vocab_size_2, 0) |
|
self.assertEqual(vocab_size, vocab_size_2) |
|
self.assertEqual(added_toks, len(new_toks)) |
|
self.assertEqual(all_size_2, all_size + len(new_toks)) |
|
|
|
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) |
|
|
|
self.assertGreaterEqual(len(tokens), 4) |
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1) |
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) |
|
|
|
new_toks_2 = { |
|
"eos_token": AddedToken(">>>>|||<||<<|<<", rstrip=True, lstrip=True), |
|
"pad_token": AddedToken("<<<<<|||>|>>>>|>", rstrip=True, lstrip=True), |
|
} |
|
added_toks_2 = tokenizer.add_special_tokens(new_toks_2) |
|
vocab_size_3 = tokenizer.vocab_size |
|
all_size_3 = len(tokenizer) |
|
|
|
self.assertNotEqual(vocab_size_3, 0) |
|
self.assertEqual(vocab_size, vocab_size_3) |
|
self.assertEqual(added_toks_2, len(new_toks_2)) |
|
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) |
|
|
|
tokens = tokenizer.encode( |
|
">>>>|||<||<<|<< aaaaa bbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False |
|
) |
|
|
|
self.assertGreaterEqual(len(tokens), 6) |
|
self.assertGreater(tokens[0], tokenizer.vocab_size - 1) |
|
self.assertGreater(tokens[0], tokens[1]) |
|
|
|
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) |
|
self.assertGreater(tokens[-2], tokens[-3]) |
|
self.assertEqual(tokens[0], tokenizer.eos_token_id) |
|
self.assertEqual(tokens[-2], tokenizer.pad_token_id) |
|
|
|
def test_add_special_tokens(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
input_text, ids = self.get_clean_sequence(tokenizer) |
|
|
|
special_token = AddedToken("[SPECIAL_TOKEN]", lstrip=True, rstrip=True) |
|
|
|
tokenizer.add_special_tokens({"cls_token": special_token}) |
|
special_token = str(special_token) |
|
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) |
|
self.assertEqual(len(encoded_special_token), 1) |
|
|
|
text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) |
|
encoded = tokenizer.encode(text, add_special_tokens=False) |
|
|
|
input_encoded = tokenizer.encode(input_text, add_special_tokens=False) |
|
special_token_id = tokenizer.encode(special_token, add_special_tokens=False) |
|
self.assertEqual(encoded, input_encoded + special_token_id) |
|
|
|
decoded = tokenizer.decode(encoded, skip_special_tokens=True) |
|
self.assertTrue(special_token not in decoded) |
|
|
|
def test_internal_consistency(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
input_text, output_text = self.get_input_output_texts(tokenizer) |
|
|
|
tokens = tokenizer.tokenize(input_text) |
|
ids = tokenizer.convert_tokens_to_ids(tokens) |
|
ids_2 = tokenizer.encode(input_text, add_special_tokens=False) |
|
self.assertListEqual(ids, ids_2) |
|
|
|
tokens_2 = tokenizer.convert_ids_to_tokens(ids) |
|
self.assertNotEqual(len(tokens_2), 0) |
|
text_2 = tokenizer.decode(ids) |
|
self.assertIsInstance(text_2, str) |
|
|
|
self.assertEqual(text_2, output_text) |
|
|
|
@require_tokenizers |
|
def test_encode_decode_with_spaces(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False, fast=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
new_toks = [ |
|
|
|
AddedToken("[ABC]", normalized=True, lstrip=True, rstrip=True), |
|
AddedToken("[DEF]", normalized=True, lstrip=True, rstrip=True), |
|
AddedToken("GHI IHG", normalized=True, lstrip=True, rstrip=True), |
|
] |
|
tokenizer.add_tokens(new_toks) |
|
tokenizer.add_tokens([AddedToken("[SAMPLE]", normalized=True)], special_tokens=True) |
|
input = "[ABC][DEF][ABC]GHI IHG[DEF]" |
|
if self.space_between_special_tokens: |
|
output = "[ABC] [DEF] [ABC] GHI IHG [DEF]" |
|
else: |
|
output = input |
|
encoded = tokenizer.encode(input, add_special_tokens=False) |
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) |
|
|
|
self.assertIn(decoded, [output, output.lower()]) |
|
return |
|
|
|
encoded = tokenizer.encode("[ABC] [DEF][SAMPLE]", add_special_tokens=False) |
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=False) |
|
self.assertIn(decoded, ["[ABC] [DEF] [SAMPLE]", "[ABC] [DEF] [SAMPLE]".lower()]) |
|
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=True) |
|
self.assertIn(decoded, ["[ABC] [DEF]", "[ABC] [DEF]".lower()]) |
|
|
|
encoded = tokenizer.encode("[ABC][SAMPLE][DEF]", add_special_tokens=False) |
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True) |
|
self.assertIn(decoded, ["[ABC] [SAMPLE] [DEF]", "[ABC][SAMPLE][DEF]".lower()]) |
|
|
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=False) |
|
self.assertIn(decoded, ["[ABC][SAMPLE][DEF]", "[ABC][SAMPLE][DEF]".lower()]) |
|
|
|
def test_mask_output(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if ( |
|
tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" |
|
and "token_type_ids" in tokenizer.model_input_names |
|
): |
|
seq_0 = "Test this method." |
|
seq_1 = "With these inputs." |
|
information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True) |
|
sequences, mask = information["input_ids"], information["token_type_ids"] |
|
self.assertEqual(len(sequences), len(mask)) |
|
|
|
def test_token_type_ids(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
seq_0 = "Test this method." |
|
|
|
|
|
|
|
|
|
|
|
output = tokenizer(seq_0, return_token_type_ids=True) |
|
self.assertIn(0, output["token_type_ids"]) |
|
|
|
def test_sequence_ids(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
if not tokenizer.is_fast: |
|
continue |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
seq_0 = "Test this method." |
|
seq_1 = "With these inputs." |
|
|
|
|
|
|
|
|
|
|
|
output = tokenizer(seq_0) |
|
self.assertIn(0, output.sequence_ids()) |
|
|
|
output = tokenizer(seq_0, seq_1) |
|
self.assertIn(0, output.sequence_ids()) |
|
self.assertIn(1, output.sequence_ids()) |
|
|
|
if tokenizer.num_special_tokens_to_add(pair=True): |
|
self.assertIn(None, output.sequence_ids()) |
|
|
|
@require_jinja |
|
def test_chat_template(self): |
|
dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}" |
|
dummy_conversation = [ |
|
{"role": "system", "content": "system message"}, |
|
{"role": "user", "content": "user message"}, |
|
{"role": "assistant", "content": "assistant message"}, |
|
] |
|
expected_output = "systemsystem messageuseruser messageassistantassistant message" |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
output = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template=dummy_template, tokenize=False, return_dict=False |
|
) |
|
self.assertEqual(output, expected_output) |
|
|
|
|
|
output = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template=dummy_template, tokenize=True, return_dict=False |
|
) |
|
dict_output = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template=dummy_template, tokenize=True, return_dict=True |
|
) |
|
self.assertEqual(dict_output["input_ids"], output) |
|
|
|
tokenizer.chat_template = dummy_template |
|
self.assertEqual(tokenizer.chat_template, dummy_template) |
|
output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False, return_dict=False) |
|
self.assertEqual(output, expected_output) |
|
|
|
tokenizer.apply_chat_template(dummy_conversation, tokenize=True, return_dict=False) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
tokenizer.save_pretrained(tmp_dir_name) |
|
tokenizer = tokenizer.from_pretrained(tmp_dir_name) |
|
|
|
self.assertEqual(tokenizer.chat_template, dummy_template) |
|
output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False, return_dict=False) |
|
self.assertEqual(output, expected_output) |
|
|
|
tokenizer.apply_chat_template(dummy_conversation, tokenize=True, return_dict=False) |
|
|
|
@require_jinja |
|
def test_chat_template_batched(self): |
|
dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}" |
|
dummy_conversations = [ |
|
[ |
|
{"role": "system", "content": "system message"}, |
|
{"role": "user", "content": "user message"}, |
|
{"role": "assistant", "content": "assistant message"}, |
|
], |
|
[ |
|
{"role": "system", "content": "system message 2"}, |
|
{"role": "user", "content": "user message 2"}, |
|
{"role": "assistant", "content": "assistant message 2"}, |
|
], |
|
] |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
output = tokenizer.apply_chat_template( |
|
dummy_conversations, chat_template=dummy_template, tokenize=False |
|
) |
|
self.assertEqual( |
|
output, |
|
[ |
|
"systemsystem messageuseruser messageassistantassistant message", |
|
"systemsystem message 2useruser message 2assistantassistant message 2", |
|
], |
|
) |
|
one_element_output = tokenizer.apply_chat_template( |
|
dummy_conversations[:1], chat_template=dummy_template, tokenize=False |
|
) |
|
self.assertEqual( |
|
one_element_output, ["systemsystem messageuseruser messageassistantassistant message"] |
|
) |
|
tokenizer.apply_chat_template( |
|
dummy_conversations, chat_template=dummy_template, tokenize=True |
|
) |
|
|
|
@require_jinja |
|
def test_chat_template_dict(self): |
|
dummy_template_1 = "{{'a'}}" |
|
dummy_template_2 = "{{'b'}}" |
|
dummy_conversation = [ |
|
{"role": "user", "content": "user message"}, |
|
] |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokenizer.chat_template = {"template1": dummy_template_1, "template2": dummy_template_2} |
|
output1 = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template=dummy_template_1, tokenize=False |
|
) |
|
output1_via_dict = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template="template1", tokenize=False |
|
) |
|
self.assertEqual(output1, output1_via_dict) |
|
output2 = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template=dummy_template_2, tokenize=False |
|
) |
|
output2_via_dict = tokenizer.apply_chat_template( |
|
dummy_conversation, chat_template="template2", tokenize=False |
|
) |
|
self.assertEqual(output2, output2_via_dict) |
|
|
|
@require_jinja |
|
def test_chat_template_dict_saving(self): |
|
dummy_template_1 = "{{'a'}}" |
|
dummy_template_2 = "{{'b'}}" |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokenizer.chat_template = {"template1": dummy_template_1, "template2": dummy_template_2} |
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
tokenizer.save_pretrained(tmp_dir_name) |
|
config_dict = json.load(open(os.path.join(tmp_dir_name, "tokenizer_config.json"))) |
|
|
|
self.assertEqual( |
|
config_dict["chat_template"], |
|
[{"name": "template1", "template": "{{'a'}}"}, {"name": "template2", "template": "{{'b'}}"}], |
|
) |
|
new_tokenizer = tokenizer.from_pretrained(tmp_dir_name) |
|
|
|
self.assertEqual(new_tokenizer.chat_template, tokenizer.chat_template) |
|
|
|
def test_number_of_added_tokens(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
seq_0 = "Test this method." |
|
seq_1 = "With these inputs." |
|
|
|
sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) |
|
attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) |
|
|
|
|
|
if len(attached_sequences) != 2: |
|
self.assertEqual( |
|
tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) |
|
) |
|
|
|
def test_maximum_encoding_length_single_input(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) |
|
|
|
sequence = tokenizer.encode(seq_0, add_special_tokens=False) |
|
total_length = len(sequence) |
|
|
|
self.assertGreater( |
|
total_length, 4, "Issue with the testing sequence, please update it, it's too short" |
|
) |
|
|
|
|
|
model_max_length = tokenizer.model_max_length |
|
self.assertEqual(model_max_length, 100) |
|
seq_1 = seq_0 * model_max_length |
|
|
|
sequence1 = tokenizer(seq_1, add_special_tokens=False) |
|
total_length1 = len(sequence1["input_ids"]) |
|
self.assertGreater( |
|
total_length1, |
|
model_max_length, |
|
"Issue with the testing sequence, please update it, it's too short", |
|
) |
|
|
|
|
|
padding_strategies = ( |
|
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] |
|
) |
|
for padding_state in padding_strategies: |
|
with self.subTest(f"Padding: {padding_state}"): |
|
for truncation_state in [True, "longest_first", "only_first"]: |
|
with self.subTest(f"Truncation: {truncation_state}"): |
|
output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state) |
|
self.assertEqual(len(output["input_ids"]), model_max_length) |
|
|
|
output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state) |
|
self.assertEqual(len(output["input_ids"][0]), model_max_length) |
|
|
|
|
|
|
|
tokenizer.deprecation_warnings = {} |
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
output = tokenizer(seq_1, padding=padding_state, truncation=False) |
|
self.assertNotEqual(len(output["input_ids"]), model_max_length) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertTrue( |
|
cm.records[0].message.startswith( |
|
"Token indices sequence length is longer than the specified maximum sequence length" |
|
" for this model" |
|
) |
|
) |
|
|
|
tokenizer.deprecation_warnings = {} |
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
output = tokenizer([seq_1], padding=padding_state, truncation=False) |
|
self.assertNotEqual(len(output["input_ids"][0]), model_max_length) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertTrue( |
|
cm.records[0].message.startswith( |
|
"Token indices sequence length is longer than the specified maximum sequence length" |
|
" for this model" |
|
) |
|
) |
|
|
|
|
|
stride = 2 |
|
information = tokenizer( |
|
seq_0, |
|
max_length=total_length - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation="longest_first", |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
|
|
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
truncated_sequence = information["input_ids"][0] |
|
overflowing_tokens = information["input_ids"][1] |
|
self.assertEqual(len(information["input_ids"]), 2) |
|
|
|
self.assertEqual(len(truncated_sequence), total_length - 2) |
|
self.assertEqual(truncated_sequence, sequence[:-2]) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride) |
|
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) |
|
else: |
|
truncated_sequence = information["input_ids"] |
|
overflowing_tokens = information["overflowing_tokens"] |
|
|
|
self.assertEqual(len(truncated_sequence), total_length - 2) |
|
self.assertEqual(truncated_sequence, sequence[:-2]) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride) |
|
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) |
|
|
|
def test_maximum_encoding_length_pair_input(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
stride = 2 |
|
seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20) |
|
if len(ids) <= 2 + stride: |
|
seq_0 = (seq_0 + " ") * (2 + stride) |
|
ids = None |
|
|
|
seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False) |
|
self.assertGreater(len(seq0_tokens), 2 + stride) |
|
|
|
seq_1 = "This is another sentence to be encoded." |
|
seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) |
|
if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2: |
|
seq1_tokens = seq1_tokens + seq1_tokens |
|
seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False) |
|
seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False) |
|
|
|
self.assertGreater(len(seq1_tokens), 2 + stride) |
|
|
|
smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens |
|
|
|
|
|
|
|
sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) |
|
|
|
|
|
model_max_length = tokenizer.model_max_length |
|
self.assertEqual(model_max_length, 100) |
|
seq_2 = seq_0 * model_max_length |
|
self.assertGreater(len(seq_2), model_max_length) |
|
|
|
sequence1 = tokenizer(seq_1, add_special_tokens=False) |
|
total_length1 = len(sequence1["input_ids"]) |
|
sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False) |
|
total_length2 = len(sequence2["input_ids"]) |
|
self.assertLess( |
|
total_length1, model_max_length - 10, "Issue with the testing sequence, please update it." |
|
) |
|
self.assertGreater( |
|
total_length2, model_max_length, "Issue with the testing sequence, please update it." |
|
) |
|
|
|
|
|
padding_strategies = ( |
|
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] |
|
) |
|
for padding_state in padding_strategies: |
|
with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"): |
|
for truncation_state in [True, "longest_first", "only_first"]: |
|
with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"): |
|
output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state) |
|
self.assertEqual(len(output["input_ids"]), model_max_length) |
|
|
|
output = tokenizer( |
|
[seq_2], [seq_1], padding=padding_state, truncation=truncation_state |
|
) |
|
self.assertEqual(len(output["input_ids"][0]), model_max_length) |
|
|
|
|
|
output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second") |
|
self.assertEqual(len(output["input_ids"]), model_max_length) |
|
|
|
output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second") |
|
self.assertEqual(len(output["input_ids"][0]), model_max_length) |
|
|
|
|
|
|
|
tokenizer.deprecation_warnings = {} |
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False) |
|
self.assertNotEqual(len(output["input_ids"]), model_max_length) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertTrue( |
|
cm.records[0].message.startswith( |
|
"Token indices sequence length is longer than the specified maximum sequence length" |
|
" for this model" |
|
) |
|
) |
|
|
|
tokenizer.deprecation_warnings = {} |
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False) |
|
self.assertNotEqual(len(output["input_ids"][0]), model_max_length) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertTrue( |
|
cm.records[0].message.startswith( |
|
"Token indices sequence length is longer than the specified maximum sequence length" |
|
" for this model" |
|
) |
|
) |
|
|
|
truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode( |
|
seq_1, add_special_tokens=False |
|
) |
|
truncated_second_sequence = ( |
|
tokenizer.encode(seq_0, add_special_tokens=False) |
|
+ tokenizer.encode(seq_1, add_special_tokens=False)[:-2] |
|
) |
|
truncated_longest_sequence = ( |
|
truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence |
|
) |
|
|
|
overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[ |
|
-(2 + stride) : |
|
] + tokenizer.encode(seq_1, add_special_tokens=False) |
|
overflow_second_sequence = ( |
|
tokenizer.encode(seq_0, add_special_tokens=False) |
|
+ tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :] |
|
) |
|
overflow_longest_sequence = ( |
|
overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence |
|
) |
|
|
|
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
information = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation="longest_first", |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
truncated_sequence = information["input_ids"][0] |
|
overflowing_tokens = information["input_ids"][1] |
|
self.assertEqual(len(information["input_ids"]), 2) |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_longest_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) |
|
self.assertEqual(overflowing_tokens, overflow_longest_sequence) |
|
else: |
|
|
|
with self.assertRaises(ValueError) as context: |
|
information = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation="longest_first", |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
|
|
self.assertTrue( |
|
context.exception.args[0].startswith( |
|
"Not possible to return overflowing tokens for pair of sequences with the " |
|
"`longest_first`. Please select another truncation strategy than `longest_first`, " |
|
"for instance `only_second` or `only_first`." |
|
) |
|
) |
|
|
|
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
information = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation=True, |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
truncated_sequence = information["input_ids"][0] |
|
overflowing_tokens = information["input_ids"][1] |
|
self.assertEqual(len(information["input_ids"]), 2) |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_longest_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) |
|
self.assertEqual(overflowing_tokens, overflow_longest_sequence) |
|
else: |
|
|
|
with self.assertRaises(ValueError) as context: |
|
information = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation=True, |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
|
|
self.assertTrue( |
|
context.exception.args[0].startswith( |
|
"Not possible to return overflowing tokens for pair of sequences with the " |
|
"`longest_first`. Please select another truncation strategy than `longest_first`, " |
|
"for instance `only_second` or `only_first`." |
|
) |
|
) |
|
|
|
information_first_truncated = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation="only_first", |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
truncated_sequence = information_first_truncated["input_ids"][0] |
|
overflowing_tokens = information_first_truncated["input_ids"][1] |
|
self.assertEqual(len(information_first_truncated["input_ids"]), 2) |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_first_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens)) |
|
self.assertEqual(overflowing_tokens, overflow_first_sequence) |
|
else: |
|
truncated_sequence = information_first_truncated["input_ids"] |
|
overflowing_tokens = information_first_truncated["overflowing_tokens"] |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_first_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride) |
|
self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :]) |
|
|
|
information_second_truncated = tokenizer( |
|
seq_0, |
|
seq_1, |
|
max_length=len(sequence) - 2, |
|
add_special_tokens=False, |
|
stride=stride, |
|
truncation="only_second", |
|
return_overflowing_tokens=True, |
|
|
|
) |
|
|
|
if isinstance(tokenizer, PreTrainedTokenizerFast): |
|
truncated_sequence = information_second_truncated["input_ids"][0] |
|
overflowing_tokens = information_second_truncated["input_ids"][1] |
|
self.assertEqual(len(information_second_truncated["input_ids"]), 2) |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_second_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens)) |
|
self.assertEqual(overflowing_tokens, overflow_second_sequence) |
|
else: |
|
truncated_sequence = information_second_truncated["input_ids"] |
|
overflowing_tokens = information_second_truncated["overflowing_tokens"] |
|
|
|
self.assertEqual(len(truncated_sequence), len(sequence) - 2) |
|
self.assertEqual(truncated_sequence, truncated_second_sequence) |
|
|
|
self.assertEqual(len(overflowing_tokens), 2 + stride) |
|
self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :]) |
|
|
|
|
|
@unittest.skip( |
|
reason="start to fail after # 29473. See https://github.com/huggingface/transformers/pull/29473#pullrequestreview-1945687810" |
|
) |
|
@slow |
|
@require_read_token |
|
def test_encode_decode_fast_slow_all_tokens(self): |
|
if self.rust_tokenizer_class is not None: |
|
pretrained_name = self.from_pretrained_id |
|
|
|
slow_tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, legacy=False) |
|
with self.subTest(f"{pretrained_name}"): |
|
rust_tokenizer = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, from_slow=True, legacy=False |
|
) |
|
input_full_vocab_ids = list( |
|
range(len(slow_tokenizer)) |
|
) |
|
input_full_vocab_string = rust_tokenizer.convert_tokens_to_string( |
|
rust_tokenizer.convert_ids_to_tokens(input_full_vocab_ids) |
|
) |
|
print(f"Length of the input string that is tested: {len(input_full_vocab_string)}") |
|
|
|
for chunk in range(0, len(input_full_vocab_string) - 1024, 1024): |
|
string_to_check = input_full_vocab_string[chunk : chunk + 1024] |
|
with self.subTest(f"{(chunk/len(input_full_vocab_string))*100}%"): |
|
slow_encode = slow_tokenizer.encode(string_to_check) |
|
fast_encode = rust_tokenizer.encode(string_to_check) |
|
self.assertEqual( |
|
slow_encode, |
|
fast_encode, |
|
"Hint: the following tokenization diff were obtained for slow vs fast:\n " |
|
f"elements in slow: {set(slow_tokenizer.tokenize(string_to_check))-set(rust_tokenizer.tokenize(string_to_check))} \nvs\n " |
|
f"elements in fast: {set(rust_tokenizer.tokenize(string_to_check))-set(slow_tokenizer.tokenize(string_to_check))} \n" |
|
f"string used : {string_to_check}", |
|
) |
|
print(f"Length of the input ids that is tested: {len(input_full_vocab_ids)}") |
|
for chunk in range(0, len(input_full_vocab_ids) - 100, 100): |
|
ids_to_decode = input_full_vocab_ids[chunk : chunk + 100] |
|
with self.subTest(f"{(chunk/len(input_full_vocab_string))*100}%"): |
|
self.assertEqual( |
|
slow_tokenizer.decode( |
|
ids_to_decode, |
|
space_between_special_tokens=False, |
|
clean_up_tokenization_spaces=False, |
|
), |
|
rust_tokenizer.decode( |
|
ids_to_decode, |
|
space_between_special_tokens=False, |
|
clean_up_tokenization_spaces=False, |
|
), |
|
f"Hint here are the tokens being decoded.: {slow_tokenizer.convert_ids_to_tokens(ids_to_decode)}", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_special_tokens_mask(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence_0 = "Encode this." |
|
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) |
|
encoded_sequence_dict = tokenizer.encode_plus( |
|
sequence_0, |
|
add_special_tokens=True, |
|
return_special_tokens_mask=True, |
|
) |
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] |
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] |
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) |
|
|
|
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] |
|
self.assertEqual(encoded_sequence, filtered_sequence) |
|
|
|
def test_special_tokens_mask_input_pairs(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence_0 = "Encode this." |
|
sequence_1 = "This one too please." |
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) |
|
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False) |
|
encoded_sequence_dict = tokenizer.encode_plus( |
|
sequence_0, |
|
sequence_1, |
|
add_special_tokens=True, |
|
return_special_tokens_mask=True, |
|
|
|
) |
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] |
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] |
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) |
|
|
|
filtered_sequence = [ |
|
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) |
|
] |
|
filtered_sequence = [x for x in filtered_sequence if x is not None] |
|
self.assertEqual(encoded_sequence, filtered_sequence) |
|
|
|
def test_padding_side_in_kwargs(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
if self.test_rust_tokenizer: |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, padding_side="left", **kwargs |
|
) |
|
self.assertEqual(tokenizer_r.padding_side, "left") |
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, padding_side="right", **kwargs |
|
) |
|
self.assertEqual(tokenizer_r.padding_side, "right") |
|
|
|
self.assertRaises( |
|
ValueError, |
|
self.rust_tokenizer_class.from_pretrained, |
|
pretrained_name, |
|
padding_side="unauthorized", |
|
**kwargs, |
|
) |
|
|
|
if self.test_slow_tokenizer: |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="left", **kwargs) |
|
self.assertEqual(tokenizer_p.padding_side, "left") |
|
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="right", **kwargs) |
|
self.assertEqual(tokenizer_p.padding_side, "right") |
|
|
|
self.assertRaises( |
|
ValueError, |
|
self.tokenizer_class.from_pretrained, |
|
pretrained_name, |
|
padding_side="unauthorized", |
|
**kwargs, |
|
) |
|
|
|
def test_truncation_side_in_kwargs(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
if self.test_rust_tokenizer: |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, truncation_side="left", **kwargs |
|
) |
|
self.assertEqual(tokenizer_r.truncation_side, "left") |
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, truncation_side="right", **kwargs |
|
) |
|
self.assertEqual(tokenizer_r.truncation_side, "right") |
|
|
|
self.assertRaises( |
|
ValueError, |
|
self.rust_tokenizer_class.from_pretrained, |
|
pretrained_name, |
|
truncation_side="unauthorized", |
|
**kwargs, |
|
) |
|
|
|
if self.test_slow_tokenizer: |
|
tokenizer_p = self.tokenizer_class.from_pretrained( |
|
pretrained_name, truncation_side="left", **kwargs |
|
) |
|
self.assertEqual(tokenizer_p.truncation_side, "left") |
|
|
|
tokenizer_p = self.tokenizer_class.from_pretrained( |
|
pretrained_name, truncation_side="right", **kwargs |
|
) |
|
self.assertEqual(tokenizer_p.truncation_side, "right") |
|
|
|
self.assertRaises( |
|
ValueError, |
|
self.tokenizer_class.from_pretrained, |
|
pretrained_name, |
|
truncation_side="unauthorized", |
|
**kwargs, |
|
) |
|
|
|
def test_right_and_left_padding(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence = "Sequence" |
|
padding_size = 10 |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequence) |
|
|
|
padding_idx = tokenizer.pad_token_id |
|
|
|
|
|
tokenizer.padding_side = "right" |
|
encoded_sequence = tokenizer.encode(sequence) |
|
sequence_length = len(encoded_sequence) |
|
padded_sequence = tokenizer.encode( |
|
sequence, max_length=sequence_length + padding_size, padding="max_length" |
|
) |
|
padded_sequence_length = len(padded_sequence) |
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length) |
|
self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence) |
|
|
|
|
|
tokenizer.padding_side = "left" |
|
encoded_sequence = tokenizer.encode(sequence) |
|
sequence_length = len(encoded_sequence) |
|
padded_sequence = tokenizer.encode( |
|
sequence, max_length=sequence_length + padding_size, padding="max_length" |
|
) |
|
padded_sequence_length = len(padded_sequence) |
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length) |
|
self.assertEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence) |
|
|
|
|
|
encoded_sequence = tokenizer.encode(sequence) |
|
sequence_length = len(encoded_sequence) |
|
|
|
tokenizer.padding_side = "right" |
|
padded_sequence_right = tokenizer.encode(sequence, padding=True) |
|
padded_sequence_right_length = len(padded_sequence_right) |
|
self.assertEqual(sequence_length, padded_sequence_right_length) |
|
self.assertEqual(encoded_sequence, padded_sequence_right) |
|
|
|
tokenizer.padding_side = "left" |
|
padded_sequence_left = tokenizer.encode(sequence, padding="longest") |
|
padded_sequence_left_length = len(padded_sequence_left) |
|
self.assertEqual(sequence_length, padded_sequence_left_length) |
|
self.assertEqual(encoded_sequence, padded_sequence_left) |
|
|
|
tokenizer.padding_side = "right" |
|
padded_sequence_right = tokenizer.encode(sequence) |
|
padded_sequence_right_length = len(padded_sequence_right) |
|
self.assertEqual(sequence_length, padded_sequence_right_length) |
|
self.assertEqual(encoded_sequence, padded_sequence_right) |
|
|
|
tokenizer.padding_side = "left" |
|
padded_sequence_left = tokenizer.encode(sequence, padding=False) |
|
padded_sequence_left_length = len(padded_sequence_left) |
|
self.assertEqual(sequence_length, padded_sequence_left_length) |
|
self.assertEqual(encoded_sequence, padded_sequence_left) |
|
|
|
def test_right_and_left_truncation(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence = "This is a test sequence" |
|
|
|
|
|
truncation_size = 3 |
|
tokenizer.truncation_side = "right" |
|
encoded_sequence = tokenizer.encode(sequence, add_special_tokens=False) |
|
sequence_length = len(encoded_sequence) |
|
|
|
truncated_sequence = tokenizer.encode( |
|
sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False |
|
) |
|
truncated_sequence_length = len(truncated_sequence) |
|
self.assertEqual(sequence_length, truncated_sequence_length + truncation_size) |
|
self.assertEqual(encoded_sequence[:-truncation_size], truncated_sequence) |
|
|
|
|
|
tokenizer.truncation_side = "left" |
|
sequence_length = len(encoded_sequence) |
|
truncated_sequence = tokenizer.encode( |
|
sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False |
|
) |
|
truncated_sequence_length = len(truncated_sequence) |
|
self.assertEqual(sequence_length, truncated_sequence_length + truncation_size) |
|
self.assertEqual(encoded_sequence[truncation_size:], truncated_sequence) |
|
|
|
|
|
sequence_length = len(encoded_sequence) |
|
|
|
tokenizer.truncation_side = "right" |
|
truncated_sequence_right = tokenizer.encode(sequence, truncation=True, add_special_tokens=False) |
|
truncated_sequence_right_length = len(truncated_sequence_right) |
|
self.assertEqual(sequence_length, truncated_sequence_right_length) |
|
self.assertEqual(encoded_sequence, truncated_sequence_right) |
|
|
|
tokenizer.truncation_side = "left" |
|
truncated_sequence_left = tokenizer.encode( |
|
sequence, truncation="longest_first", add_special_tokens=False |
|
) |
|
truncated_sequence_left_length = len(truncated_sequence_left) |
|
self.assertEqual(sequence_length, truncated_sequence_left_length) |
|
self.assertEqual(encoded_sequence, truncated_sequence_left) |
|
|
|
tokenizer.truncation_side = "right" |
|
truncated_sequence_right = tokenizer.encode(sequence, add_special_tokens=False) |
|
truncated_sequence_right_length = len(truncated_sequence_right) |
|
self.assertEqual(sequence_length, truncated_sequence_right_length) |
|
self.assertEqual(encoded_sequence, truncated_sequence_right) |
|
|
|
tokenizer.truncation_side = "left" |
|
truncated_sequence_left = tokenizer.encode(sequence, truncation=False, add_special_tokens=False) |
|
truncated_sequence_left_length = len(truncated_sequence_left) |
|
self.assertEqual(sequence_length, truncated_sequence_left_length) |
|
self.assertEqual(encoded_sequence, truncated_sequence_left) |
|
|
|
def test_padding_to_max_length(self): |
|
"""We keep this test for backward compatibility but it should be remove when `pad_to_max_length` is deprecated.""" |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence = "Sequence" |
|
padding_size = 10 |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequence) |
|
|
|
padding_idx = tokenizer.pad_token_id |
|
|
|
|
|
tokenizer.padding_side = "right" |
|
encoded_sequence = tokenizer.encode(sequence) |
|
sequence_length = len(encoded_sequence) |
|
|
|
padded_sequence = tokenizer.encode( |
|
sequence, max_length=sequence_length + padding_size, pad_to_max_length=True |
|
) |
|
padded_sequence_length = len(padded_sequence) |
|
self.assertEqual(sequence_length + padding_size, padded_sequence_length) |
|
self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence) |
|
|
|
|
|
encoded_sequence = tokenizer.encode(sequence) |
|
sequence_length = len(encoded_sequence) |
|
|
|
tokenizer.padding_side = "right" |
|
padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True) |
|
padded_sequence_right_length = len(padded_sequence_right) |
|
self.assertEqual(sequence_length, padded_sequence_right_length) |
|
self.assertEqual(encoded_sequence, padded_sequence_right) |
|
|
|
def test_padding_to_multiple_of(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if tokenizer.pad_token is None: |
|
self.skipTest("No padding token.") |
|
else: |
|
empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8) |
|
normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8) |
|
for key, value in empty_tokens.items(): |
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") |
|
for key, value in normal_tokens.items(): |
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") |
|
|
|
normal_tokens = tokenizer("This", pad_to_multiple_of=8) |
|
for key, value in normal_tokens.items(): |
|
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") |
|
|
|
|
|
normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8) |
|
for key, value in normal_tokens.items(): |
|
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") |
|
|
|
|
|
self.assertRaises( |
|
ValueError, |
|
tokenizer.__call__, |
|
"This", |
|
padding=True, |
|
truncation=True, |
|
max_length=12, |
|
pad_to_multiple_of=8, |
|
) |
|
|
|
def test_padding_with_attention_mask(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if tokenizer.pad_token is None: |
|
self.skipTest("No padding token.") |
|
if "attention_mask" not in tokenizer.model_input_names: |
|
self.skipTest("This model does not use attention mask.") |
|
|
|
features = [ |
|
{"input_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]}, |
|
{"input_ids": [1, 2, 3], "attention_mask": [1, 1, 0]}, |
|
] |
|
padded_features = tokenizer.pad(features) |
|
if tokenizer.padding_side == "right": |
|
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]]) |
|
else: |
|
self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]]) |
|
|
|
def test_encode_plus_with_padding(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequence = "Sequence" |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequence) |
|
|
|
padding_size = 10 |
|
padding_idx = tokenizer.pad_token_id |
|
token_type_padding_idx = tokenizer.pad_token_type_id |
|
|
|
encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True) |
|
input_ids = encoded_sequence["input_ids"] |
|
special_tokens_mask = encoded_sequence["special_tokens_mask"] |
|
sequence_length = len(input_ids) |
|
|
|
|
|
tokenizer.padding_side = "right" |
|
|
|
not_padded_sequence = tokenizer.encode_plus( |
|
sequence, |
|
padding=True, |
|
return_special_tokens_mask=True, |
|
) |
|
not_padded_input_ids = not_padded_sequence["input_ids"] |
|
|
|
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] |
|
not_padded_sequence_length = len(not_padded_input_ids) |
|
|
|
self.assertEqual(sequence_length, not_padded_sequence_length) |
|
self.assertEqual(input_ids, not_padded_input_ids) |
|
self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask) |
|
|
|
not_padded_sequence = tokenizer.encode_plus( |
|
sequence, |
|
padding=False, |
|
return_special_tokens_mask=True, |
|
) |
|
not_padded_input_ids = not_padded_sequence["input_ids"] |
|
|
|
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] |
|
not_padded_sequence_length = len(not_padded_input_ids) |
|
|
|
self.assertEqual(sequence_length, not_padded_sequence_length) |
|
self.assertEqual(input_ids, not_padded_input_ids) |
|
self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask) |
|
|
|
|
|
tokenizer.padding_side = "right" |
|
|
|
right_padded_sequence = tokenizer.encode_plus( |
|
sequence, |
|
max_length=sequence_length + padding_size, |
|
padding="max_length", |
|
return_special_tokens_mask=True, |
|
) |
|
right_padded_input_ids = right_padded_sequence["input_ids"] |
|
|
|
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] |
|
right_padded_sequence_length = len(right_padded_input_ids) |
|
|
|
self.assertEqual(sequence_length + padding_size, right_padded_sequence_length) |
|
self.assertEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids) |
|
self.assertEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask) |
|
|
|
|
|
tokenizer.padding_side = "left" |
|
left_padded_sequence = tokenizer.encode_plus( |
|
sequence, |
|
max_length=sequence_length + padding_size, |
|
padding="max_length", |
|
return_special_tokens_mask=True, |
|
) |
|
left_padded_input_ids = left_padded_sequence["input_ids"] |
|
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] |
|
left_padded_sequence_length = len(left_padded_input_ids) |
|
|
|
self.assertEqual(sequence_length + padding_size, left_padded_sequence_length) |
|
self.assertEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids) |
|
self.assertEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask) |
|
|
|
if "token_type_ids" in tokenizer.model_input_names: |
|
token_type_ids = encoded_sequence["token_type_ids"] |
|
left_padded_token_type_ids = left_padded_sequence["token_type_ids"] |
|
right_padded_token_type_ids = right_padded_sequence["token_type_ids"] |
|
|
|
self.assertEqual( |
|
token_type_ids + [token_type_padding_idx] * padding_size, right_padded_token_type_ids |
|
) |
|
self.assertEqual( |
|
[token_type_padding_idx] * padding_size + token_type_ids, left_padded_token_type_ids |
|
) |
|
|
|
if "attention_mask" in tokenizer.model_input_names: |
|
attention_mask = encoded_sequence["attention_mask"] |
|
right_padded_attention_mask = right_padded_sequence["attention_mask"] |
|
left_padded_attention_mask = left_padded_sequence["attention_mask"] |
|
|
|
self.assertEqual(attention_mask + [0] * padding_size, right_padded_attention_mask) |
|
self.assertEqual([0] * padding_size + attention_mask, left_padded_attention_mask) |
|
|
|
def test_padding_warning_message_fast_tokenizer(self): |
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
sequence = "This is a text" |
|
|
|
tokenizer_fast = self.get_rust_tokenizer() |
|
|
|
self._check_no_pad_token_padding(tokenizer_fast, sequence) |
|
|
|
encoding_fast = tokenizer_fast(sequence) |
|
|
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
tokenizer_fast.pad(encoding_fast) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertIn( |
|
"Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to" |
|
" encode the text followed by a call to the `pad` method to get a padded encoding.", |
|
cm.records[0].message, |
|
) |
|
|
|
if not self.test_slow_tokenizer: |
|
return |
|
|
|
tokenizer_slow = self.get_tokenizer() |
|
|
|
self._check_no_pad_token_padding(tokenizer_slow, sequence) |
|
|
|
encoding_slow = tokenizer_slow(sequence) |
|
|
|
with self.assertLogs(level="WARNING") as cm: |
|
|
|
|
|
logger.warning("Dummy warning") |
|
tokenizer_slow.pad(encoding_slow) |
|
self.assertEqual(len(cm.records), 1) |
|
self.assertIn( |
|
"Dummy warning", |
|
cm.records[0].message, |
|
) |
|
|
|
def test_separate_tokenizers(self): |
|
|
|
|
|
|
|
tokenizers = self.get_tokenizers(random_argument=True) |
|
new_tokenizers = self.get_tokenizers(random_argument=False) |
|
|
|
for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers): |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
self.assertTrue(tokenizer.init_kwargs["random_argument"]) |
|
self.assertTrue(tokenizer.init_kwargs["random_argument"]) |
|
self.assertFalse(new_tokenizer.init_kwargs["random_argument"]) |
|
|
|
def test_get_vocab(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
vocab_dict = tokenizer.get_vocab() |
|
self.assertIsInstance(vocab_dict, dict) |
|
self.assertGreaterEqual(len(tokenizer), len(vocab_dict)) |
|
|
|
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] |
|
self.assertEqual(len(vocab), len(tokenizer)) |
|
|
|
tokenizer.add_tokens(["asdfasdfasdfasdf"]) |
|
vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))] |
|
self.assertEqual(len(vocab), len(tokenizer)) |
|
|
|
def test_conversion_reversible(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
vocab = tokenizer.get_vocab() |
|
for word, ind in vocab.items(): |
|
if word == tokenizer.unk_token: |
|
continue |
|
self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind) |
|
self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word) |
|
|
|
def test_call(self): |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequences = [ |
|
"Testing batch encode plus", |
|
"Testing batch encode plus with different sequence lengths", |
|
"Testing batch encode plus with different sequence lengths correctly pads", |
|
] |
|
|
|
|
|
encoded_sequences_1 = tokenizer.encode_plus(sequences[0]) |
|
encoded_sequences_2 = tokenizer(sequences[0]) |
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2) |
|
|
|
|
|
encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1]) |
|
encoded_sequences_2 = tokenizer(sequences[0], sequences[1]) |
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2) |
|
|
|
|
|
encoded_sequences_1 = tokenizer.batch_encode_plus(sequences) |
|
encoded_sequences_2 = tokenizer(sequences) |
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2) |
|
|
|
|
|
encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences))) |
|
encoded_sequences_2 = tokenizer(sequences, sequences) |
|
self.assertEqual(encoded_sequences_1, encoded_sequences_2) |
|
|
|
def test_batch_encode_plus_batch_sequence_length(self): |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequences = [ |
|
"Testing batch encode plus", |
|
"Testing batch encode plus with different sequence lengths", |
|
"Testing batch encode plus with different sequence lengths correctly pads", |
|
] |
|
|
|
encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences] |
|
encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False) |
|
self.assertListEqual( |
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) |
|
) |
|
|
|
maximum_length = len( |
|
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) |
|
) |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequences) |
|
|
|
encoded_sequences_padded = [ |
|
tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length") |
|
for sequence in sequences |
|
] |
|
|
|
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True) |
|
self.assertListEqual( |
|
encoded_sequences_padded, |
|
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), |
|
) |
|
|
|
|
|
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True) |
|
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( |
|
sequences, max_length=maximum_length + 10, padding="longest" |
|
) |
|
for key in encoded_sequences_batch_padded_1.keys(): |
|
self.assertListEqual( |
|
encoded_sequences_batch_padded_1[key], |
|
encoded_sequences_batch_padded_2[key], |
|
) |
|
|
|
|
|
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False) |
|
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( |
|
sequences, max_length=maximum_length + 10, padding=False |
|
) |
|
for key in encoded_sequences_batch_padded_1.keys(): |
|
self.assertListEqual( |
|
encoded_sequences_batch_padded_1[key], |
|
encoded_sequences_batch_padded_2[key], |
|
) |
|
|
|
@require_tokenizers |
|
def test_added_token_are_matched_longest_first(self): |
|
if not self.test_slow_tokenizer: |
|
self.skipTest("This test is only for slow tokenizers") |
|
return |
|
tokenizers = self.get_tokenizers(fast=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
try: |
|
tokenizer.add_tokens([AddedToken("extra_id_1")]) |
|
tokenizer.add_tokens([AddedToken("extra_id_100")]) |
|
except Exception: |
|
|
|
self.skipTest("Cannot add those Added tokens") |
|
|
|
|
|
|
|
tokens = tokenizer.tokenize("This is some extra_id_100") |
|
self.assertIn("extra_id_100", tokens) |
|
|
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokenizer.add_tokens([AddedToken("extra_id_100")]) |
|
tokenizer.add_tokens([AddedToken("extra_id_1")]) |
|
|
|
tokens = tokenizer.tokenize("This is some extra_id_100") |
|
self.assertIn("extra_id_100", tokens) |
|
|
|
@require_tokenizers |
|
def test_added_token_serializable(self): |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
new_token = AddedToken("new_token", lstrip=True) |
|
tokenizer.add_tokens([new_token]) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
tokenizer.save_pretrained(tmp_dir_name) |
|
tokenizer.from_pretrained(tmp_dir_name) |
|
|
|
def test_batch_encode_plus_padding(self): |
|
|
|
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequences = [ |
|
"Testing batch encode plus", |
|
"Testing batch encode plus with different sequence lengths", |
|
"Testing batch encode plus with different sequence lengths correctly pads", |
|
] |
|
|
|
max_length = 100 |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequences) |
|
|
|
encoded_sequences = [ |
|
tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") |
|
for sequence in sequences |
|
] |
|
encoded_sequences_batch = tokenizer.batch_encode_plus( |
|
sequences, max_length=max_length, padding="max_length" |
|
) |
|
self.assertListEqual( |
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) |
|
) |
|
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokenizer.padding_side = "left" |
|
sequences = [ |
|
"Testing batch encode plus", |
|
"Testing batch encode plus with different sequence lengths", |
|
"Testing batch encode plus with different sequence lengths correctly pads", |
|
] |
|
|
|
max_length = 100 |
|
|
|
|
|
self._check_no_pad_token_padding(tokenizer, sequences) |
|
|
|
encoded_sequences = [ |
|
tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length") |
|
for sequence in sequences |
|
] |
|
encoded_sequences_batch = tokenizer.batch_encode_plus( |
|
sequences, max_length=max_length, padding="max_length" |
|
) |
|
self.assertListEqual( |
|
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) |
|
) |
|
|
|
def test_pretokenized_inputs(self): |
|
|
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space: |
|
continue |
|
|
|
|
|
sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20) |
|
|
|
token_sequence = sequence.split() |
|
|
|
|
|
|
|
output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False) |
|
output_sequence = tokenizer.encode(sequence, add_special_tokens=False) |
|
self.assertEqual(output, output_sequence) |
|
|
|
output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True) |
|
output_sequence = tokenizer.encode(sequence, add_special_tokens=True) |
|
self.assertEqual(output, output_sequence) |
|
|
|
|
|
output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False) |
|
output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True) |
|
output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
|
|
|
|
sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()] |
|
token_sequence_batch = [s.split() for s in sequence_batch] |
|
sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch] |
|
|
|
output = tokenizer.batch_encode_plus( |
|
token_sequence_batch, is_split_into_words=True, add_special_tokens=False |
|
) |
|
output_sequence = tokenizer.batch_encode_plus( |
|
sequence_batch_cleaned_up_spaces, add_special_tokens=False |
|
) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
output = tokenizer.batch_encode_plus( |
|
token_sequence_batch, is_split_into_words=True, add_special_tokens=True |
|
) |
|
output_sequence = tokenizer.batch_encode_plus( |
|
sequence_batch_cleaned_up_spaces, add_special_tokens=True |
|
) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
|
|
|
|
output = tokenizer.encode( |
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False |
|
) |
|
output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False) |
|
self.assertEqual(output, output_sequence) |
|
output = tokenizer.encode( |
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True |
|
) |
|
output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True) |
|
self.assertEqual(output, output_sequence) |
|
|
|
|
|
output = tokenizer.encode_plus( |
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False |
|
) |
|
output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
output = tokenizer.encode_plus( |
|
token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True |
|
) |
|
output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
|
|
|
|
sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [ |
|
(sequence.strip() + " " + sequence.strip(), sequence.strip()) |
|
] |
|
token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch] |
|
sequence_pair_batch_cleaned_up_spaces = [ |
|
tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch |
|
] |
|
|
|
output = tokenizer.batch_encode_plus( |
|
token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False |
|
) |
|
output_sequence = tokenizer.batch_encode_plus( |
|
sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False |
|
) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
output = tokenizer.batch_encode_plus( |
|
token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True |
|
) |
|
output_sequence = tokenizer.batch_encode_plus( |
|
sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True |
|
) |
|
for key in output.keys(): |
|
self.assertEqual(output[key], output_sequence[key]) |
|
|
|
def test_prepare_for_model(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
string_sequence = "Testing the prepare_for_model method." |
|
ids = tokenizer.encode(string_sequence, add_special_tokens=False) |
|
prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True) |
|
|
|
input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True) |
|
|
|
self.assertEqual(input_dict, prepared_input_dict) |
|
|
|
def test_batch_encode_plus_overflowing_tokens(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
string_sequences = ["Testing the prepare_for_model method.", "Test"] |
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"}) |
|
|
|
tokenizer.batch_encode_plus( |
|
string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3 |
|
) |
|
|
|
@is_pt_tf_cross_test |
|
def test_batch_encode_plus_tensors(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
sequences = [ |
|
"Testing batch encode plus", |
|
"Testing batch encode plus with different sequence lengths", |
|
"Testing batch encode plus with different sequence lengths correctly pads", |
|
] |
|
|
|
|
|
self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt") |
|
self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf") |
|
|
|
if tokenizer.pad_token_id is None: |
|
self.assertRaises( |
|
ValueError, |
|
tokenizer.batch_encode_plus, |
|
sequences, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
self.assertRaises( |
|
ValueError, |
|
tokenizer.batch_encode_plus, |
|
sequences, |
|
padding="longest", |
|
return_tensors="tf", |
|
) |
|
else: |
|
pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt") |
|
tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf") |
|
encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True) |
|
|
|
for key in encoded_sequences.keys(): |
|
pytorch_value = pytorch_tensor[key].tolist() |
|
tensorflow_value = tensorflow_tensor[key].numpy().tolist() |
|
encoded_value = encoded_sequences[key] |
|
|
|
self.assertEqual(pytorch_value, tensorflow_value, encoded_value) |
|
|
|
def _check_no_pad_token_padding(self, tokenizer, sequences): |
|
|
|
if tokenizer.pad_token_id is None: |
|
with self.assertRaises(ValueError): |
|
if isinstance(sequences, list): |
|
tokenizer.batch_encode_plus(sequences, padding="longest") |
|
else: |
|
tokenizer.encode_plus(sequences, padding=True) |
|
|
|
|
|
tokenizer.add_special_tokens({"pad_token": "<PAD>"}) |
|
|
|
@require_torch |
|
@slow |
|
def test_torch_encode_plus_sent_to_model(self): |
|
import torch |
|
|
|
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING |
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: |
|
return |
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] |
|
config = config_class() |
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None: |
|
return |
|
|
|
model = model_class(config) |
|
|
|
|
|
is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") |
|
if is_using_common_embeddings: |
|
self.assertGreaterEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer)) |
|
|
|
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] |
|
sequence = " ".join(first_ten_tokens) |
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt") |
|
|
|
|
|
encoded_sequence.to(model.device) |
|
|
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
model(**encoded_sequence) |
|
model(**batch_encoded_sequence) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@require_tf |
|
@slow |
|
def test_tf_encode_plus_sent_to_model(self): |
|
from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING |
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING) |
|
|
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: |
|
return |
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] |
|
config = config_class() |
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None: |
|
return |
|
|
|
model = model_class(config) |
|
|
|
|
|
self.assertGreaterEqual(model.config.vocab_size, len(tokenizer)) |
|
|
|
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] |
|
sequence = " ".join(first_ten_tokens) |
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf") |
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf") |
|
|
|
|
|
model(encoded_sequence) |
|
model(batch_encoded_sequence) |
|
|
|
|
|
@require_torch |
|
@slow |
|
def test_np_encode_plus_sent_to_model(self): |
|
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING |
|
|
|
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: |
|
return |
|
|
|
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] |
|
config = config_class() |
|
|
|
if config.is_encoder_decoder or config.pad_token_id is None: |
|
return |
|
|
|
|
|
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] |
|
sequence = " ".join(first_ten_tokens) |
|
encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np") |
|
batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np") |
|
|
|
|
|
|
|
if encoded_sequence is None: |
|
raise ValueError("Cannot convert list to numpy tensor on encode_plus()") |
|
|
|
if batch_encoded_sequence is None: |
|
raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus()") |
|
|
|
if self.test_rust_tokenizer: |
|
fast_tokenizer = self.get_rust_tokenizer() |
|
encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np") |
|
batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus( |
|
[sequence, sequence], return_tensors="np" |
|
) |
|
|
|
|
|
|
|
if encoded_sequence_fast is None: |
|
raise ValueError("Cannot convert list to numpy tensor on encode_plus() (fast)") |
|
|
|
if batch_encoded_sequence_fast is None: |
|
raise ValueError("Cannot convert list to numpy tensor on batch_encode_plus() (fast)") |
|
|
|
@require_torch |
|
def test_prepare_seq2seq_batch(self): |
|
if not self.test_seq2seq: |
|
return |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
src_text = [ |
|
" UN Chief Says There Is No Military Solution in Syria", |
|
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" |
|
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" |
|
" will only worsen the violence and misery for millions of people.", |
|
] |
|
tgt_text = [ |
|
"Şeful ONU declară că nu există o soluţie militară în Siria", |
|
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" |
|
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' |
|
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", |
|
] |
|
try: |
|
batch = tokenizer.prepare_seq2seq_batch( |
|
src_texts=src_text, |
|
tgt_texts=tgt_text, |
|
max_length=3, |
|
max_target_length=10, |
|
return_tensors="pt", |
|
src_lang="en_XX", |
|
) |
|
except NotImplementedError: |
|
return |
|
self.assertEqual(batch.input_ids.shape[1], 3) |
|
self.assertEqual(batch.labels.shape[1], 10) |
|
|
|
batch = tokenizer.prepare_seq2seq_batch( |
|
src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt" |
|
) |
|
self.assertEqual(batch.input_ids.shape[1], 3) |
|
self.assertEqual(batch.labels.shape[1], 3) |
|
|
|
batch_encoder_only = tokenizer.prepare_seq2seq_batch( |
|
src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt" |
|
) |
|
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3) |
|
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3) |
|
self.assertNotIn("decoder_input_ids", batch_encoder_only) |
|
|
|
def test_is_fast(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
self.assertTrue(tokenizer_r.is_fast) |
|
|
|
if self.test_slow_tokenizer: |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
self.assertFalse(tokenizer_p.is_fast) |
|
|
|
def test_fast_only_inputs(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
self.assertRaises(TypeError, tokenizer_r.tokenize, None) |
|
self.assertRaises(TypeError, tokenizer_r.encode, None) |
|
self.assertRaises(TypeError, tokenizer_r.encode_plus, None) |
|
self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None) |
|
|
|
def test_alignement_methods(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] |
|
text = " ".join(words) |
|
batch_size = 3 |
|
|
|
encoding = tokenizer_r.encode_plus(text, add_special_tokens=False) |
|
|
|
batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False) |
|
num_tokens = len(encoding["input_ids"]) |
|
|
|
last_word_index = len(words) - 1 |
|
last_token_index = num_tokens - 1 |
|
last_batch_index = batch_size - 1 |
|
last_char_index = len(text) - 1 |
|
|
|
|
|
self.assertEqual(len(encoding.words(0)), num_tokens) |
|
self.assertEqual(max(encoding.words(0)), last_word_index) |
|
self.assertEqual(min(encoding.words(0)), 0) |
|
self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens) |
|
self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index) |
|
self.assertEqual(min(batch_encoding.words(last_batch_index)), 0) |
|
self.assertEqual(len(encoding.tokens(0)), num_tokens) |
|
|
|
|
|
self.assertEqual(encoding.token_to_word(0), 0) |
|
self.assertEqual(encoding.token_to_word(0, 0), 0) |
|
self.assertEqual(encoding.token_to_word(last_token_index), last_word_index) |
|
self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index) |
|
self.assertEqual(batch_encoding.token_to_word(1, 0), 0) |
|
self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index) |
|
self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index) |
|
|
|
|
|
self.assertEqual(encoding.word_to_tokens(0).start, 0) |
|
self.assertEqual(encoding.word_to_tokens(0, 0).start, 0) |
|
self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1) |
|
self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) |
|
self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0) |
|
self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1) |
|
self.assertEqual( |
|
batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1 |
|
) |
|
|
|
|
|
self.assertEqual(encoding.token_to_chars(0).start, 0) |
|
self.assertEqual(encoding.token_to_chars(0, 0).start, 0) |
|
self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1) |
|
self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) |
|
self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0) |
|
self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1) |
|
self.assertEqual( |
|
batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1 |
|
) |
|
|
|
|
|
self.assertEqual(encoding.char_to_token(0), 0) |
|
self.assertEqual(encoding.char_to_token(0, 0), 0) |
|
self.assertEqual(encoding.char_to_token(last_char_index), last_token_index) |
|
self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index) |
|
self.assertEqual(batch_encoding.char_to_token(1, 0), 0) |
|
self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index) |
|
self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index) |
|
|
|
|
|
self.assertEqual(encoding.char_to_word(0), 0) |
|
self.assertEqual(encoding.char_to_word(0, 0), 0) |
|
self.assertEqual(encoding.char_to_word(last_char_index), last_word_index) |
|
self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index) |
|
self.assertEqual(batch_encoding.char_to_word(1, 0), 0) |
|
self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index) |
|
self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index) |
|
|
|
|
|
self.assertEqual(encoding.word_to_chars(0).start, 0) |
|
self.assertEqual(encoding.word_to_chars(0, 0).start, 0) |
|
self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1) |
|
self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) |
|
self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0) |
|
self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1) |
|
self.assertEqual( |
|
batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1 |
|
) |
|
|
|
|
|
self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0) |
|
self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0) |
|
self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0) |
|
self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0) |
|
self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0) |
|
|
|
|
|
|
|
words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"] |
|
text = " ".join(words) |
|
pair_words = ["Amazing", "example", "full", "of", "inspiration"] |
|
pair_text = " ".join(pair_words) |
|
batch_size = 3 |
|
index_word_in_first_seq = words.index("inspiration") |
|
index_word_in_pair_seq = pair_words.index("inspiration") |
|
index_char_in_first_seq = text.find("inspiration") |
|
index_char_in_pair_seq = pair_text.find("inspiration") |
|
|
|
pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False) |
|
|
|
pair_batch_encoding = tokenizer_r.batch_encode_plus( |
|
[(text, pair_text)] * batch_size, add_special_tokens=False |
|
) |
|
num_tokens = len(encoding["input_ids"]) |
|
|
|
last_word_index = len(words) - 1 |
|
last_token_index = num_tokens - 1 |
|
last_batch_index = batch_size - 1 |
|
last_char_index = len(text) - 1 |
|
|
|
|
|
self.assertNotEqual( |
|
pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start, |
|
pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start, |
|
) |
|
self.assertEqual( |
|
pair_encoding["input_ids"][ |
|
pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start |
|
], |
|
pair_encoding["input_ids"][ |
|
pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start |
|
], |
|
) |
|
self.assertNotEqual( |
|
pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start, |
|
pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start, |
|
) |
|
self.assertEqual( |
|
pair_batch_encoding["input_ids"][1][ |
|
pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start |
|
], |
|
pair_batch_encoding["input_ids"][1][ |
|
pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start |
|
], |
|
) |
|
|
|
|
|
self.assertNotEqual( |
|
pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0), |
|
pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1), |
|
) |
|
self.assertEqual( |
|
pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)], |
|
pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)], |
|
) |
|
self.assertNotEqual( |
|
pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0), |
|
pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1), |
|
) |
|
self.assertEqual( |
|
pair_batch_encoding["input_ids"][1][ |
|
pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0) |
|
], |
|
pair_batch_encoding["input_ids"][1][ |
|
pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1) |
|
], |
|
) |
|
|
|
|
|
self.assertNotEqual( |
|
pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0), |
|
pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1), |
|
) |
|
self.assertEqual( |
|
words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)], |
|
pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)], |
|
) |
|
self.assertNotEqual( |
|
pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0), |
|
pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1), |
|
) |
|
self.assertEqual( |
|
words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)], |
|
pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)], |
|
) |
|
|
|
|
|
self.assertNotEqual( |
|
pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start, |
|
pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start, |
|
) |
|
self.assertEqual( |
|
text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start], |
|
pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start], |
|
) |
|
self.assertNotEqual( |
|
pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start, |
|
pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start, |
|
) |
|
self.assertEqual( |
|
text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start], |
|
pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start], |
|
) |
|
|
|
|
|
pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True) |
|
|
|
pair_sequence_ids = [ |
|
pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"])) |
|
] |
|
self.assertIn(0, pair_sequence_ids) |
|
self.assertIn(1, pair_sequence_ids) |
|
if tokenizer_r.num_special_tokens_to_add(pair=True): |
|
self.assertIn(None, pair_sequence_ids) |
|
|
|
pair_batch_encoding = tokenizer_r.batch_encode_plus( |
|
[(text, pair_text)] * batch_size, add_special_tokens=True |
|
) |
|
pair_batch_sequence_ids = [ |
|
pair_batch_encoding.token_to_sequence(1, i) |
|
for i in range(len(pair_batch_encoding["input_ids"][0])) |
|
] |
|
self.assertIn(0, pair_batch_sequence_ids) |
|
self.assertIn(1, pair_batch_sequence_ids) |
|
if tokenizer_r.num_special_tokens_to_add(pair=True): |
|
self.assertIn(None, pair_batch_sequence_ids) |
|
|
|
def test_tokenization_python_rust_equals(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
input_p = tokenizer_p.encode_plus(self._data) |
|
input_r = tokenizer_r.encode_plus(self._data) |
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): |
|
self.assertSequenceEqual(input_p[key], input_r[key]) |
|
|
|
input_pairs_p = tokenizer_p.encode_plus(self._data, self._data) |
|
input_pairs_r = tokenizer_r.encode_plus(self._data, self._data) |
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): |
|
self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key]) |
|
|
|
|
|
input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True) |
|
input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True) |
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): |
|
self.assertSequenceEqual(input_p[key], input_r[key]) |
|
|
|
|
|
input_p = tokenizer_p.encode_plus( |
|
self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True |
|
) |
|
input_r = tokenizer_r.encode_plus( |
|
self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True |
|
) |
|
|
|
for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()): |
|
self.assertSequenceEqual(input_p[key], input_r[key][0]) |
|
|
|
def test_num_special_tokens_to_add_equal(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
self.assertEqual( |
|
tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False) |
|
) |
|
self.assertEqual( |
|
tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True) |
|
) |
|
|
|
def test_max_length_equal(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence) |
|
self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair) |
|
|
|
def test_special_tokens_map_equal(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
self.assertSequenceEqual( |
|
tokenizer_p.special_tokens_map.items(), |
|
tokenizer_r.special_tokens_map.items(), |
|
) |
|
|
|
def test_add_tokens(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
vocab_size = len(tokenizer_r) |
|
self.assertEqual(tokenizer_r.add_tokens(""), 0) |
|
self.assertEqual(tokenizer_r.add_tokens("testoken"), 1) |
|
self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2) |
|
self.assertEqual(len(tokenizer_r), vocab_size + 3) |
|
|
|
self.assertEqual(tokenizer_r.add_special_tokens({}), 0) |
|
self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2) |
|
self.assertRaises( |
|
AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"} |
|
) |
|
self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1) |
|
self.assertEqual( |
|
tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2 |
|
) |
|
self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"]) |
|
self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list) |
|
self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2) |
|
|
|
self.assertEqual(len(tokenizer_r), vocab_size + 8) |
|
|
|
def test_offsets_mapping(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
text = "Wonderful no inspiration example with subtoken" |
|
pair = "Along with an awesome pair" |
|
|
|
|
|
tokens_with_offsets = tokenizer_r.encode_plus( |
|
text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True |
|
) |
|
added_tokens = tokenizer_r.num_special_tokens_to_add(False) |
|
offsets = tokens_with_offsets["offset_mapping"] |
|
|
|
|
|
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) |
|
|
|
|
|
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) |
|
|
|
|
|
tokens_with_offsets = tokenizer_r.encode_plus( |
|
text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True |
|
) |
|
added_tokens = tokenizer_r.num_special_tokens_to_add(True) |
|
offsets = tokens_with_offsets["offset_mapping"] |
|
|
|
|
|
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) |
|
|
|
|
|
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) |
|
|
|
def test_batch_encode_dynamic_overflowing(self): |
|
""" |
|
When calling batch_encode with multiple sequence it can returns different number of |
|
overflowing encoding for each sequence: |
|
[ |
|
Sequence 1: [Encoding 1, Encoding 2], |
|
Sequence 2: [Encoding 1], |
|
Sequence 3: [Encoding 1, Encoding 2, ... Encoding N] |
|
] |
|
This needs to be padded so that it can represented as a tensor |
|
""" |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"): |
|
if is_torch_available(): |
|
returned_tensor = "pt" |
|
elif is_tf_available(): |
|
returned_tensor = "tf" |
|
elif is_flax_available(): |
|
returned_tensor = "jax" |
|
else: |
|
return |
|
|
|
if not tokenizer.pad_token or tokenizer.pad_token_id < 0: |
|
return |
|
|
|
tokens = tokenizer.encode_plus( |
|
"HuggingFace is solving NLP one commit at a time", |
|
max_length=6, |
|
padding=True, |
|
truncation=True, |
|
return_tensors=returned_tensor, |
|
return_overflowing_tokens=True, |
|
) |
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): |
|
self.assertEqual(len(tokens[key].shape), 2) |
|
|
|
|
|
tokens = tokenizer.batch_encode_plus( |
|
["HuggingFace is solving NLP one commit at a time"], |
|
max_length=6, |
|
padding=True, |
|
truncation="only_first", |
|
return_tensors=returned_tensor, |
|
return_overflowing_tokens=True, |
|
) |
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): |
|
self.assertEqual(len(tokens[key].shape), 2) |
|
self.assertEqual(tokens[key].shape[-1], 6) |
|
|
|
|
|
tokens = tokenizer.batch_encode_plus( |
|
["HuggingFace is solving NLP one commit at a time", "Very tiny input"], |
|
max_length=6, |
|
padding=True, |
|
truncation="only_first", |
|
return_tensors=returned_tensor, |
|
return_overflowing_tokens=True, |
|
) |
|
|
|
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): |
|
self.assertEqual(len(tokens[key].shape), 2) |
|
self.assertEqual(tokens[key].shape[-1], 6) |
|
|
|
def test_compare_pretokenized_inputs(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space: |
|
continue |
|
|
|
|
|
pretokenized_input_simple = "This is a sample input".split() |
|
pretokenized_input_pair = "This is a sample pair".split() |
|
|
|
|
|
output_r = tokenizer_r.encode( |
|
pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False |
|
) |
|
output_p = tokenizer_p.encode( |
|
pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False |
|
) |
|
self.assertEqual(output_p, output_r) |
|
|
|
kwargs = { |
|
"is_split_into_words": True, |
|
|
|
|
|
"return_overflowing_tokens": False, |
|
"return_special_tokens_mask": True, |
|
"return_offsets_mapping": False, |
|
|
|
} |
|
batch_kwargs = { |
|
"is_split_into_words": True, |
|
|
|
|
|
"return_overflowing_tokens": False, |
|
"return_special_tokens_mask": True, |
|
"return_offsets_mapping": False, |
|
|
|
} |
|
|
|
output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs) |
|
output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs) |
|
for key in output_p.keys(): |
|
self.assertEqual(output_p[key], output_r[key]) |
|
|
|
|
|
input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair] |
|
output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs) |
|
output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs) |
|
for key in output_p.keys(): |
|
self.assertEqual(output_p[key], output_r[key]) |
|
|
|
|
|
output_r = tokenizer_r.encode( |
|
pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True |
|
) |
|
output_p = tokenizer_p.encode( |
|
pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True |
|
) |
|
self.assertEqual(output_p, output_r) |
|
|
|
|
|
output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) |
|
output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs) |
|
for key in output_p.keys(): |
|
self.assertEqual(output_p[key], output_r[key]) |
|
|
|
|
|
input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [ |
|
pretokenized_input_simple + pretokenized_input_pair, |
|
pretokenized_input_pair, |
|
] |
|
output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs) |
|
output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs) |
|
for key in output_p.keys(): |
|
self.assertEqual(output_p[key], output_r[key]) |
|
|
|
def test_create_token_type_ids(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
input_simple = [1, 2, 3] |
|
input_pair = [1, 2, 3] |
|
|
|
|
|
output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple) |
|
output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple) |
|
self.assertEqual(output_p, output_r) |
|
|
|
|
|
output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair) |
|
output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair) |
|
self.assertEqual(output_p, output_r) |
|
|
|
def test_build_inputs_with_special_tokens(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_pairs = [ |
|
("", ""), |
|
("", "This is a sample pair"), |
|
("This is a sample input", ""), |
|
("This is a sample input", "This is a sample pair"), |
|
] |
|
|
|
for sample_input, sample_pair in input_pairs: |
|
|
|
input_simple = tokenizer_p.encode(sample_input, add_special_tokens=False) |
|
input_pair = tokenizer_p.encode(sample_pair, add_special_tokens=False) |
|
|
|
|
|
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) |
|
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) |
|
self.assertEqual(output_p, output_r) |
|
|
|
|
|
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) |
|
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) |
|
self.assertEqual(output_p, output_r) |
|
|
|
def test_padding(self, max_length=50): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) |
|
pad_token_id = tokenizer_p.pad_token_id |
|
|
|
|
|
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) |
|
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True) |
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length") |
|
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length") |
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
input_r = tokenizer_r.encode("This is a simple input", padding="longest") |
|
input_p = tokenizer_p.encode("This is a simple input", padding=True) |
|
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.encode( |
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True |
|
) |
|
input_p = tokenizer_p.encode( |
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True |
|
) |
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
input_r = tokenizer_r.encode( |
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length" |
|
) |
|
input_p = tokenizer_p.encode( |
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length" |
|
) |
|
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True) |
|
input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest") |
|
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.encode_plus( |
|
"This is a simple input", max_length=max_length, pad_to_max_length=True |
|
) |
|
input_p = tokenizer_p.encode_plus( |
|
"This is a simple input", max_length=max_length, pad_to_max_length=True |
|
) |
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) |
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
input_r = tokenizer_r.encode_plus( |
|
"This is a simple input", max_length=max_length, padding="max_length" |
|
) |
|
input_p = tokenizer_p.encode_plus( |
|
"This is a simple input", max_length=max_length, padding="max_length" |
|
) |
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) |
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
|
|
input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest") |
|
input_p = tokenizer_p.encode_plus("This is a simple input", padding=True) |
|
self.assert_padded_input_match( |
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id |
|
) |
|
|
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
|
|
|
|
input_r = tokenizer_r.encode_plus( |
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True |
|
) |
|
input_p = tokenizer_p.encode_plus( |
|
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True |
|
) |
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) |
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
input_r = tokenizer_r.encode_plus( |
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length" |
|
) |
|
input_p = tokenizer_p.encode_plus( |
|
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length" |
|
) |
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) |
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest") |
|
input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True) |
|
self.assert_padded_input_match( |
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id |
|
) |
|
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) |
|
|
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
pad_to_max_length=True, |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
pad_to_max_length=True, |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
padding="max_length", |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
padding="max_length", |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
padding="longest", |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], |
|
max_length=max_length, |
|
padding=True, |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) |
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], padding="longest" |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a simple input 1", "This is a simple input 2"], padding=True |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
[ |
|
("This is a simple input 1", "This is a simple input 2"), |
|
("This is a simple pair 1", "This is a simple pair 2"), |
|
], |
|
max_length=max_length, |
|
truncation=True, |
|
padding="max_length", |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
[ |
|
("This is a simple input 1", "This is a simple input 2"), |
|
("This is a simple pair 1", "This is a simple pair 2"), |
|
], |
|
max_length=max_length, |
|
truncation=True, |
|
padding="max_length", |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
[ |
|
("This is a simple input 1", "This is a simple input 2"), |
|
("This is a simple pair 1", "This is a simple pair 2"), |
|
], |
|
padding=True, |
|
) |
|
input_p = tokenizer_p.batch_encode_plus( |
|
[ |
|
("This is a simple input 1", "This is a simple input 2"), |
|
("This is a simple pair 1", "This is a simple pair 2"), |
|
], |
|
padding="longest", |
|
) |
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.encode_plus("This is a input 1") |
|
input_r = tokenizer_r.pad(input_r) |
|
|
|
input_p = tokenizer_p.encode_plus("This is a input 1") |
|
input_p = tokenizer_p.pad(input_p) |
|
|
|
self.assert_padded_input_match( |
|
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id |
|
) |
|
|
|
|
|
input_r = tokenizer_r.encode_plus("This is a input 1") |
|
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") |
|
|
|
input_p = tokenizer_p.encode_plus("This is a input 1") |
|
input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length") |
|
|
|
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
input_r = tokenizer_r.pad(input_r) |
|
|
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
input_p = tokenizer_p.pad(input_p) |
|
|
|
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") |
|
|
|
input_p = tokenizer_p.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length") |
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
|
|
input_r = tokenizer_r.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length") |
|
input_p = tokenizer_p.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length") |
|
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) |
|
|
|
def test_padding_different_model_input_name(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) |
|
pad_token_id = tokenizer_p.pad_token_id |
|
|
|
input_r = tokenizer_r.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
input_p = tokenizer_r.batch_encode_plus( |
|
["This is a input 1", "This is a much longer input whilch should be padded"] |
|
) |
|
|
|
|
|
input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]] |
|
del input_r[tokenizer_r.model_input_names[0]] |
|
|
|
input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]] |
|
del input_p[tokenizer_p.model_input_names[0]] |
|
|
|
|
|
tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:] |
|
tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:] |
|
|
|
input_r = tokenizer_r.pad(input_r, padding="longest") |
|
input_p = tokenizer_r.pad(input_p, padding="longest") |
|
|
|
max_length = len(input_p["inputs"][0]) |
|
self.assert_batch_padded_input_match( |
|
input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs" |
|
) |
|
|
|
def test_save_pretrained(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
tmpdirname2 = tempfile.mkdtemp() |
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) |
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) |
|
|
|
|
|
for file_path in tokenizer_r_files + tokenizer_p_files: |
|
if os.path.exists(file_path) and file_path.endswith(".json"): |
|
check_json_file_has_correct_format(file_path) |
|
|
|
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) |
|
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) |
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) |
|
|
|
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) |
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) |
|
|
|
|
|
for key in tokenizer_pp.special_tokens_map: |
|
self.assertTrue(hasattr(tokenizer_rp, key)) |
|
|
|
|
|
|
|
shutil.rmtree(tmpdirname2) |
|
|
|
|
|
tmpdirname2 = tempfile.mkdtemp() |
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) |
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) |
|
|
|
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) |
|
|
|
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) |
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) |
|
|
|
|
|
for key in tokenizer_pp.special_tokens_map: |
|
self.assertTrue(hasattr(tokenizer_rp, key)) |
|
|
|
shutil.rmtree(tmpdirname2) |
|
|
|
|
|
tmpdirname2 = tempfile.mkdtemp() |
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) |
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) |
|
|
|
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) |
|
|
|
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) |
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) |
|
|
|
|
|
for key in tokenizer_pp.special_tokens_map: |
|
self.assertTrue(hasattr(tokenizer_rp, key)) |
|
|
|
shutil.rmtree(tmpdirname2) |
|
|
|
def test_embeded_special_tokens(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
sentence = "A, <mask> AllenNLP sentence." |
|
tokens_r = tokenizer_r.encode_plus( |
|
sentence, |
|
add_special_tokens=True, |
|
) |
|
tokens_p = tokenizer_p.encode_plus( |
|
sentence, |
|
add_special_tokens=True, |
|
) |
|
|
|
for key in tokens_p.keys(): |
|
self.assertEqual(tokens_r[key], tokens_p[key]) |
|
|
|
if "token_type_ids" in tokens_r: |
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) |
|
|
|
tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) |
|
tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) |
|
self.assertSequenceEqual(tokens_r, tokens_p) |
|
|
|
def test_compare_add_special_tokens(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False) |
|
|
|
|
|
for text in ["", " "]: |
|
|
|
no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False) |
|
with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True) |
|
self.assertEqual( |
|
len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add |
|
) |
|
|
|
|
|
no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False) |
|
with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True) |
|
self.assertEqual( |
|
len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add |
|
) |
|
|
|
|
|
no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False) |
|
with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True) |
|
for key in no_special_tokens.keys(): |
|
self.assertEqual( |
|
len(no_special_tokens[key]), |
|
len(with_special_tokens[key]) - simple_num_special_tokens_to_add, |
|
) |
|
|
|
|
|
no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False) |
|
with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True) |
|
for key in no_special_tokens.keys(): |
|
for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]): |
|
self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add) |
|
|
|
def test_compare_prepare_for_model(self): |
|
if not self.test_slow_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
string_sequence = "Asserting that both tokenizers are equal" |
|
python_output = tokenizer_p.prepare_for_model( |
|
tokenizer_p.encode(string_sequence, add_special_tokens=False) |
|
) |
|
rust_output = tokenizer_r.prepare_for_model( |
|
tokenizer_r.encode(string_sequence, add_special_tokens=False) |
|
) |
|
for key in python_output: |
|
self.assertEqual(python_output[key], rust_output[key]) |
|
|
|
def test_special_tokens_initialization(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
added_tokens = [AddedToken("<special>", lstrip=True)] |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs |
|
) |
|
r_output = tokenizer_r.encode("Hey this is a <special> token") |
|
|
|
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0] |
|
|
|
self.assertTrue(special_token_id in r_output) |
|
|
|
if self.test_slow_tokenizer: |
|
|
|
tokenizer_cr = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True |
|
) |
|
tokenizer_p = self.tokenizer_class.from_pretrained( |
|
pretrained_name, additional_special_tokens=added_tokens, **kwargs |
|
) |
|
|
|
p_output = tokenizer_p.encode("Hey this is a <special> token") |
|
|
|
cr_output = tokenizer_cr.encode("Hey this is a <special> token") |
|
|
|
self.assertEqual(p_output, r_output) |
|
self.assertEqual(cr_output, r_output) |
|
self.assertTrue(special_token_id in p_output) |
|
self.assertTrue(special_token_id in cr_output) |
|
|
|
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): |
|
|
|
|
|
|
|
tokenizer_list = [] |
|
if self.test_slow_tokenizer: |
|
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) |
|
|
|
for tokenizer_class, tokenizer_utils in tokenizer_list: |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer_utils.save_pretrained(tmp_dir) |
|
|
|
tokenizer_path = "tokenizer_config.json" |
|
with open(os.path.join(tmp_dir, tokenizer_path), encoding="utf-8") as json_file: |
|
tokenizer_config = json.load(json_file) |
|
|
|
tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"] |
|
|
|
with open(os.path.join(tmp_dir, tokenizer_path), "w", encoding="utf-8") as outfile: |
|
json.dump(tokenizer_config, outfile) |
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir) |
|
self.assertIn( |
|
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens |
|
) |
|
self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab()) |
|
self.assertEqual( |
|
["an_additional_special_token"], |
|
tokenizer_without_change_in_init.convert_ids_to_tokens( |
|
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) |
|
), |
|
) |
|
|
|
|
|
new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)] |
|
tokenizer = tokenizer_class.from_pretrained( |
|
tmp_dir, |
|
additional_special_tokens=new_added_tokens, |
|
) |
|
|
|
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) |
|
self.assertEqual( |
|
["a_new_additional_special_token"], |
|
tokenizer.convert_ids_to_tokens( |
|
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) |
|
), |
|
) |
|
|
|
def test_training_new_tokenizer(self): |
|
|
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
tokenizer = self.get_rust_tokenizer() |
|
new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) |
|
|
|
|
|
inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) |
|
self.assertEqual(len(inputs["input_ids"]), 2) |
|
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) |
|
expected_result = "This is the first sentence" |
|
|
|
if tokenizer.backend_tokenizer.normalizer is not None: |
|
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) |
|
self.assertEqual(expected_result, decoded_input) |
|
|
|
|
|
|
|
self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) |
|
self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) |
|
|
|
|
|
self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) |
|
self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) |
|
|
|
|
|
self.assertSequenceEqual( |
|
tokenizer.all_special_tokens_extended, |
|
new_tokenizer.all_special_tokens_extended, |
|
) |
|
|
|
self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) |
|
|
|
def test_training_new_tokenizer_with_special_tokens_change(self): |
|
|
|
if not self.test_rust_tokenizer: |
|
return |
|
|
|
tokenizer = self.get_rust_tokenizer() |
|
|
|
class_signature = inspect.signature(tokenizer.__class__) |
|
if "cls_token" in class_signature.parameters: |
|
new_tokenizer = tokenizer.train_new_from_iterator( |
|
SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"} |
|
) |
|
cls_id = new_tokenizer.get_vocab()["<cls>"] |
|
self.assertEqual(new_tokenizer.cls_token, "<cls>") |
|
self.assertEqual(new_tokenizer.cls_token_id, cls_id) |
|
|
|
|
|
special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() |
|
special_tokens_list.remove("additional_special_tokens") |
|
special_tokens_map = {} |
|
for token in special_tokens_list: |
|
|
|
if getattr(tokenizer, f"_{token}") is not None: |
|
special_token = getattr(tokenizer, token) |
|
special_tokens_map[special_token] = f"{special_token}a" |
|
|
|
|
|
new_tokenizer = tokenizer.train_new_from_iterator( |
|
SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map |
|
) |
|
|
|
|
|
for token in special_tokens_list: |
|
|
|
if getattr(tokenizer, f"_{token}") is None: |
|
continue |
|
special_token = getattr(tokenizer, token) |
|
if special_token in special_tokens_map: |
|
new_special_token = getattr(new_tokenizer, token) |
|
self.assertEqual(special_tokens_map[special_token], new_special_token) |
|
|
|
new_id = new_tokenizer.get_vocab()[new_special_token] |
|
self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id) |
|
|
|
|
|
for special_token in tokenizer.all_special_tokens_extended: |
|
if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map: |
|
|
|
self.assertTrue( |
|
special_token in new_tokenizer.all_special_tokens_extended, |
|
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", |
|
) |
|
elif isinstance(special_token, AddedToken): |
|
|
|
|
|
special_token_str = special_token.content |
|
new_special_token_str = special_tokens_map[special_token_str] |
|
|
|
find = False |
|
for candidate in new_tokenizer.all_special_tokens_extended: |
|
if ( |
|
isinstance(candidate, AddedToken) |
|
and candidate.content == new_special_token_str |
|
and candidate.lstrip == special_token.lstrip |
|
and candidate.rstrip == special_token.rstrip |
|
and candidate.normalized == special_token.normalized |
|
and candidate.single_word == special_token.single_word |
|
): |
|
find = True |
|
break |
|
special_token.content = new_special_token_str |
|
self.assertTrue( |
|
find, |
|
f"'{special_token.__repr__()}' should appear as an `AddedToken` in the all_special_tokens_extended = " |
|
f"{[k for k in new_tokenizer.all_special_tokens_extended if str(k)==new_special_token_str]} but it is missing" |
|
", this means that the new tokenizers did not keep the `rstrip`, `lstrip`, `normalized` etc attributes.", |
|
) |
|
elif special_token not in special_tokens_map: |
|
|
|
self.assertTrue( |
|
special_token in new_tokenizer.all_special_tokens_extended, |
|
f"'{special_token.__repr__()}' should be in {new_tokenizer.all_special_tokens_extended}", |
|
) |
|
|
|
else: |
|
|
|
self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended) |
|
|
|
|
|
inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."]) |
|
self.assertEqual(len(inputs["input_ids"]), 2) |
|
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) |
|
expected_result = "This is the first sentence" |
|
|
|
if tokenizer.backend_tokenizer.normalizer is not None: |
|
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) |
|
self.assertEqual(expected_result, decoded_input) |
|
|
|
def test_tokenizer_mismatch_warning(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
with self.assertLogs("transformers", level="WARNING") as cm: |
|
try: |
|
if self.tokenizer_class == BertTokenizer: |
|
AlbertTokenizer.from_pretrained(pretrained_name) |
|
else: |
|
BertTokenizer.from_pretrained(pretrained_name) |
|
except EnvironmentError as e: |
|
|
|
|
|
error_message = str(e) |
|
except (TypeError, AttributeError): |
|
|
|
|
|
pass |
|
finally: |
|
logged_msg_target = ( |
|
"The tokenizer class you load from this checkpoint is not the same type as the class " |
|
"this function is called from." |
|
) |
|
raised_error_msg_target = "Can't load tokenizer for" |
|
self.assertTrue( |
|
cm.records[0].message.startswith(logged_msg_target) |
|
if len(cm.records) > 0 |
|
else False or raised_error_msg_target in error_message |
|
) |
|
try: |
|
if self.rust_tokenizer_class == BertTokenizerFast: |
|
AlbertTokenizerFast.from_pretrained(pretrained_name) |
|
else: |
|
BertTokenizerFast.from_pretrained(pretrained_name) |
|
except (TypeError, AttributeError): |
|
|
|
|
|
pass |
|
finally: |
|
self.assertTrue( |
|
cm.records[0].message.startswith( |
|
"The tokenizer class you load from this checkpoint is not the same type as the class" |
|
" this function is called from." |
|
) |
|
) |
|
|
|
@require_torch |
|
def test_saving_tokenizer_trainer(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True) |
|
tokenizer_old.save_pretrained(tmp_dir, legacy_format=False) |
|
|
|
|
|
model = nn.Module() |
|
|
|
|
|
tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir) |
|
training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True) |
|
trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer) |
|
|
|
|
|
trainer.save_model(os.path.join(tmp_dir, "checkpoint")) |
|
self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint"))) |
|
|
|
def test_convert_tokens_to_string_format(self): |
|
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokens = ["this", "is", "a", "test"] |
|
string = tokenizer.convert_tokens_to_string(tokens) |
|
|
|
self.assertIsInstance(string, str) |
|
|
|
def test_save_slow_from_fast_and_reload_fast(self): |
|
if not self.test_slow_tokenizer or not self.test_rust_tokenizer: |
|
|
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
with tempfile.TemporaryDirectory() as tmp_dir_1: |
|
|
|
|
|
tokenizer_fast_old_1 = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, **kwargs, use_fast=True |
|
) |
|
tokenizer_file = os.path.join(tmp_dir_1, "tokenizer.json") |
|
tokenizer_fast_old_1.backend_tokenizer.save(tokenizer_file) |
|
|
|
tokenizer_fast_old_2 = self.rust_tokenizer_class.from_pretrained( |
|
pretrained_name, **kwargs, use_fast=True, tokenizer_file=tokenizer_file |
|
) |
|
|
|
tokenizer_fast_old_2.save_pretrained(tmp_dir_1, legacy_format=True) |
|
|
|
tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir_1) |
|
with tempfile.TemporaryDirectory() as tmp_dir_2: |
|
tokenizer_slow.save_pretrained(tmp_dir_2) |
|
|
|
|
|
self.rust_tokenizer_class.from_pretrained(tmp_dir_2) |
|
|
|
|
|
def test_clean_up_tokenization_spaces(self): |
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") |
|
assert tokenizer.clean_up_tokenization_spaces is True |
|
|
|
tokens = tokenizer.encode("This shouldn't be! He'll go.") |
|
decoded = tokenizer.decode(tokens) |
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" |
|
|
|
tokenizer.clean_up_tokenization_spaces = False |
|
decoded = tokenizer.decode(tokens) |
|
assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]" |
|
assert decoded == tokenizer.decode(tokens, clean_up_tokenization_spaces=False) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2: |
|
tokenizer.save_pretrained(tmp_dir_2) |
|
tokenizer_fast = BertTokenizerFast.from_pretrained(tmp_dir_2) |
|
del tokenizer |
|
|
|
assert tokenizer_fast.clean_up_tokenization_spaces is False |
|
decoded = tokenizer_fast.decode(tokens) |
|
|
|
|
|
assert decoded == "[CLS] this shouldn ' t be! he ' ll go. [SEP]" |
|
|
|
tokenizer_fast.clean_up_tokenization_spaces = True |
|
assert tokenizer_fast.clean_up_tokenization_spaces is True |
|
|
|
decoded = tokenizer_fast.decode(tokens) |
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2: |
|
tokenizer_fast.clean_up_tokenization_spaces = False |
|
tokenizer_fast.save_pretrained(tmp_dir_2) |
|
tokenizer = BertTokenizer.from_pretrained(tmp_dir_2) |
|
|
|
assert tokenizer.clean_up_tokenization_spaces is False |
|
decoded = tokenizer.decode(tokens) |
|
assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]" |
|
|
|
tokenizer.clean_up_tokenization_spaces = True |
|
decoded = tokenizer.decode(tokens) |
|
assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]" |
|
|
|
def test_split_special_tokens(self): |
|
if not self.test_slow_tokenizer: |
|
return |
|
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
special_token = "[SPECIAL_TOKEN]" |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
|
|
if not tokenizer.is_fast: |
|
|
|
tokenizer.add_special_tokens( |
|
{ |
|
"additional_special_tokens": [ |
|
AddedToken(special_token, rstrip=True, lstrip=True, normalized=True, special=True) |
|
] |
|
} |
|
) |
|
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) |
|
self.assertEqual(len(encoded_special_token), 1) |
|
|
|
encoded_split_special_token = tokenizer.encode( |
|
special_token, add_special_tokens=False, split_special_tokens=True |
|
) |
|
if len(encoded_split_special_token) == 1: |
|
|
|
self.assertTrue( |
|
encoded_split_special_token[0] != tokenizer.convert_tokens_to_ids(special_token) |
|
) |
|
else: |
|
self.assertTrue(len(encoded_split_special_token) > 1) |
|
|
|
def test_added_tokens_serialization(self): |
|
|
|
def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir): |
|
tokenizer = tokenizer_class.from_pretrained(temp_dir) |
|
self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens) |
|
self.assertIn(new_eos, tokenizer.added_tokens_decoder.values()) |
|
self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos) |
|
self.assertDictEqual(expected, tokenizer.added_tokens_decoder) |
|
return tokenizer |
|
|
|
new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True) |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
|
|
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) |
|
EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder |
|
with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"): |
|
self.assertEqual(tokenizer._eos_token, new_eos) |
|
self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values())) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_2: |
|
tokenizer.save_pretrained(tmp_dir_2) |
|
with self.subTest( |
|
"Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class" |
|
): |
|
_test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2 |
|
) |
|
|
|
if self.rust_tokenizer_class is not None: |
|
with self.subTest( |
|
"Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class" |
|
): |
|
tokenizer_fast = _test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2 |
|
) |
|
with tempfile.TemporaryDirectory() as tmp_dir_3: |
|
tokenizer_fast.save_pretrained(tmp_dir_3) |
|
with self.subTest( |
|
"Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class" |
|
): |
|
_test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 |
|
) |
|
|
|
with self.subTest( |
|
"Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class" |
|
): |
|
_test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 |
|
) |
|
|
|
with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"): |
|
if self.rust_tokenizer_class is not None: |
|
tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) |
|
self.assertEqual(tokenizer_fast._eos_token, new_eos) |
|
self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values())) |
|
|
|
with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"): |
|
self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder) |
|
|
|
EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder |
|
with tempfile.TemporaryDirectory() as tmp_dir_4: |
|
tokenizer_fast.save_pretrained(tmp_dir_4) |
|
with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"): |
|
_test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4 |
|
) |
|
|
|
with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"): |
|
_test_added_vocab_and_eos( |
|
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4 |
|
) |
|
|
|
def test_special_token_addition(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
|
|
tokenizer_1 = tokenizer.from_pretrained(pretrained_name) |
|
tokenizer_1.add_special_tokens({"additional_special_tokens": ["<tok>"]}) |
|
self.assertEqual(tokenizer_1.additional_special_tokens, ["<tok>"]) |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer_1.save_pretrained(tmp_dir) |
|
|
|
tokenizer_2 = tokenizer.from_pretrained(pretrained_name) |
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>"]}) |
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>"]) |
|
|
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>", "<other>"]}) |
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>", "<other>"]) |
|
tokenizer_2.add_special_tokens({"additional_special_tokens": ["<other>", "<another>"]}) |
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>"]) |
|
|
|
tokenizer_2.add_special_tokens( |
|
{"additional_special_tokens": ["<tok>"]}, |
|
replace_additional_special_tokens=False, |
|
) |
|
self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>", "<tok>"]) |
|
|