|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import is_torch_available |
|
from transformers.testing_utils import require_torch |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers.activations import gelu_new, gelu_python, get_activation |
|
|
|
|
|
@require_torch |
|
class TestActivations(unittest.TestCase): |
|
def test_gelu_versions(self): |
|
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) |
|
torch_builtin = get_activation("gelu") |
|
self.assertTrue(torch.allclose(gelu_python(x), torch_builtin(x))) |
|
self.assertFalse(torch.allclose(gelu_python(x), gelu_new(x))) |
|
|
|
def test_gelu_10(self): |
|
x = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) |
|
torch_builtin = get_activation("gelu") |
|
gelu10 = get_activation("gelu_10") |
|
|
|
y_gelu = torch_builtin(x) |
|
y_gelu_10 = gelu10(x) |
|
|
|
clipped_mask = torch.where(y_gelu_10 < 10.0, 1, 0) |
|
|
|
self.assertTrue(torch.max(y_gelu_10).item() == 10.0) |
|
self.assertTrue(torch.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask)) |
|
|
|
def test_get_activation(self): |
|
get_activation("gelu") |
|
get_activation("gelu_10") |
|
get_activation("gelu_fast") |
|
get_activation("gelu_new") |
|
get_activation("gelu_python") |
|
get_activation("gelu_pytorch_tanh") |
|
get_activation("linear") |
|
get_activation("mish") |
|
get_activation("quick_gelu") |
|
get_activation("relu") |
|
get_activation("sigmoid") |
|
get_activation("silu") |
|
get_activation("swish") |
|
get_activation("tanh") |
|
with self.assertRaises(KeyError): |
|
get_activation("bogus") |
|
with self.assertRaises(KeyError): |
|
get_activation(None) |
|
|
|
def test_activations_are_distinct_objects(self): |
|
act1 = get_activation("gelu") |
|
act1.a = 1 |
|
act2 = get_activation("gelu") |
|
self.assertEqual(act1.a, 1) |
|
with self.assertRaises(AttributeError): |
|
_ = act2.a |
|
|