Aston-xMAD's picture
init commit
b37c16f verified
raw
history blame
32.8 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pytest
from transformers.audio_utils import (
amplitude_to_db,
chroma_filter_bank,
hertz_to_mel,
mel_filter_bank,
mel_to_hertz,
power_to_db,
spectrogram,
window_function,
)
from transformers.testing_utils import is_librosa_available, require_librosa
if is_librosa_available():
from librosa.filters import chroma
class AudioUtilsFunctionTester(unittest.TestCase):
def test_hertz_to_mel(self):
self.assertEqual(hertz_to_mel(0.0), 0.0)
self.assertAlmostEqual(hertz_to_mel(100), 150.48910241)
inputs = np.array([100, 200])
expected = np.array([150.48910241, 283.22989816])
self.assertTrue(np.allclose(hertz_to_mel(inputs), expected))
self.assertEqual(hertz_to_mel(0.0, "slaney"), 0.0)
self.assertEqual(hertz_to_mel(100, "slaney"), 1.5)
inputs = np.array([60, 100, 200, 1000, 1001, 2000])
expected = np.array([0.9, 1.5, 3.0, 15.0, 15.01453781, 25.08188016])
self.assertTrue(np.allclose(hertz_to_mel(inputs, "slaney"), expected))
inputs = np.array([60, 100, 200, 1000, 1001, 2000])
expected = np.array([92.6824, 150.4899, 283.2313, 999.9907, 1000.6534, 1521.3674])
self.assertTrue(np.allclose(hertz_to_mel(inputs, "kaldi"), expected))
with pytest.raises(ValueError):
hertz_to_mel(100, mel_scale=None)
def test_mel_to_hertz(self):
self.assertEqual(mel_to_hertz(0.0), 0.0)
self.assertAlmostEqual(mel_to_hertz(150.48910241), 100)
inputs = np.array([150.48910241, 283.22989816])
expected = np.array([100, 200])
self.assertTrue(np.allclose(mel_to_hertz(inputs), expected))
self.assertEqual(mel_to_hertz(0.0, "slaney"), 0.0)
self.assertEqual(mel_to_hertz(1.5, "slaney"), 100)
inputs = np.array([0.9, 1.5, 3.0, 15.0, 15.01453781, 25.08188016])
expected = np.array([60, 100, 200, 1000, 1001, 2000])
self.assertTrue(np.allclose(mel_to_hertz(inputs, "slaney"), expected))
inputs = np.array([92.6824, 150.4899, 283.2313, 999.9907, 1000.6534, 1521.3674])
expected = np.array([60, 100, 200, 1000, 1001, 2000])
self.assertTrue(np.allclose(mel_to_hertz(inputs, "kaldi"), expected))
with pytest.raises(ValueError):
mel_to_hertz(100, mel_scale=None)
def test_mel_filter_bank_shape(self):
mel_filters = mel_filter_bank(
num_frequency_bins=513,
num_mel_filters=13,
min_frequency=100,
max_frequency=4000,
sampling_rate=16000,
norm=None,
mel_scale="htk",
)
self.assertEqual(mel_filters.shape, (513, 13))
mel_filters = mel_filter_bank(
num_frequency_bins=513,
num_mel_filters=13,
min_frequency=100,
max_frequency=4000,
sampling_rate=16000,
norm="slaney",
mel_scale="slaney",
)
self.assertEqual(mel_filters.shape, (513, 13))
mel_filters = mel_filter_bank(
num_frequency_bins=513,
num_mel_filters=13,
min_frequency=100,
max_frequency=4000,
sampling_rate=16000,
norm="slaney",
mel_scale="slaney",
triangularize_in_mel_space=True,
)
self.assertEqual(mel_filters.shape, (513, 13))
def test_mel_filter_bank_htk(self):
mel_filters = mel_filter_bank(
num_frequency_bins=16,
num_mel_filters=4,
min_frequency=0,
max_frequency=2000,
sampling_rate=4000,
norm=None,
mel_scale="htk",
)
# fmt: off
expected = np.array([
[0.0 , 0.0 , 0.0 , 0.0 ],
[0.61454786, 0.0 , 0.0 , 0.0 ],
[0.82511046, 0.17488954, 0.0 , 0.0 ],
[0.35597035, 0.64402965, 0.0 , 0.0 ],
[0.0 , 0.91360726, 0.08639274, 0.0 ],
[0.0 , 0.55547007, 0.44452993, 0.0 ],
[0.0 , 0.19733289, 0.80266711, 0.0 ],
[0.0 , 0.0 , 0.87724349, 0.12275651],
[0.0 , 0.0 , 0.6038449 , 0.3961551 ],
[0.0 , 0.0 , 0.33044631, 0.66955369],
[0.0 , 0.0 , 0.05704771, 0.94295229],
[0.0 , 0.0 , 0.0 , 0.83483975],
[0.0 , 0.0 , 0.0 , 0.62612982],
[0.0 , 0.0 , 0.0 , 0.41741988],
[0.0 , 0.0 , 0.0 , 0.20870994],
[0.0 , 0.0 , 0.0 , 0.0 ]
])
# fmt: on
self.assertTrue(np.allclose(mel_filters, expected))
def test_mel_filter_bank_slaney(self):
mel_filters = mel_filter_bank(
num_frequency_bins=16,
num_mel_filters=4,
min_frequency=0,
max_frequency=2000,
sampling_rate=4000,
norm=None,
mel_scale="slaney",
)
# fmt: off
expected = np.array([
[0.0 , 0.0 , 0.0 , 0.0 ],
[0.39869419, 0.0 , 0.0 , 0.0 ],
[0.79738839, 0.0 , 0.0 , 0.0 ],
[0.80391742, 0.19608258, 0.0 , 0.0 ],
[0.40522322, 0.59477678, 0.0 , 0.0 ],
[0.00652903, 0.99347097, 0.0 , 0.0 ],
[0.0 , 0.60796161, 0.39203839, 0.0 ],
[0.0 , 0.20939631, 0.79060369, 0.0 ],
[0.0 , 0.0 , 0.84685344, 0.15314656],
[0.0 , 0.0 , 0.52418477, 0.47581523],
[0.0 , 0.0 , 0.2015161 , 0.7984839 ],
[0.0 , 0.0 , 0.0 , 0.9141874 ],
[0.0 , 0.0 , 0.0 , 0.68564055],
[0.0 , 0.0 , 0.0 , 0.4570937 ],
[0.0 , 0.0 , 0.0 , 0.22854685],
[0.0 , 0.0 , 0.0 , 0.0 ]
])
# fmt: on
self.assertTrue(np.allclose(mel_filters, expected))
def test_mel_filter_bank_kaldi(self):
mel_filters = mel_filter_bank(
num_frequency_bins=16,
num_mel_filters=4,
min_frequency=0,
max_frequency=2000,
sampling_rate=4000,
norm=None,
mel_scale="kaldi",
triangularize_in_mel_space=True,
)
# fmt: off
expected = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000],
[0.6086, 0.0000, 0.0000, 0.0000],
[0.8689, 0.1311, 0.0000, 0.0000],
[0.4110, 0.5890, 0.0000, 0.0000],
[0.0036, 0.9964, 0.0000, 0.0000],
[0.0000, 0.6366, 0.3634, 0.0000],
[0.0000, 0.3027, 0.6973, 0.0000],
[0.0000, 0.0000, 0.9964, 0.0036],
[0.0000, 0.0000, 0.7135, 0.2865],
[0.0000, 0.0000, 0.4507, 0.5493],
[0.0000, 0.0000, 0.2053, 0.7947],
[0.0000, 0.0000, 0.0000, 0.9752],
[0.0000, 0.0000, 0.0000, 0.7585],
[0.0000, 0.0000, 0.0000, 0.5539],
[0.0000, 0.0000, 0.0000, 0.3599],
[0.0000, 0.0000, 0.0000, 0.1756]]
)
# fmt: on
self.assertTrue(np.allclose(mel_filters, expected, atol=5e-5))
def test_mel_filter_bank_slaney_norm(self):
mel_filters = mel_filter_bank(
num_frequency_bins=16,
num_mel_filters=4,
min_frequency=0,
max_frequency=2000,
sampling_rate=4000,
norm="slaney",
mel_scale="slaney",
)
# fmt: off
expected = np.array([
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.19217795e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[2.38435591e-03, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[2.40387905e-03, 5.86232616e-04, 0.00000000e+00, 0.00000000e+00],
[1.21170110e-03, 1.77821783e-03, 0.00000000e+00, 0.00000000e+00],
[1.95231437e-05, 2.97020305e-03, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 1.81763684e-03, 1.04857612e-03, 0.00000000e+00],
[0.00000000e+00, 6.26036972e-04, 2.11460963e-03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 2.26505954e-03, 3.07332945e-04],
[0.00000000e+00, 0.00000000e+00, 1.40202503e-03, 9.54861093e-04],
[0.00000000e+00, 0.00000000e+00, 5.38990521e-04, 1.60238924e-03],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.83458185e-03],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.37593638e-03],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 9.17290923e-04],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.58645462e-04],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]
])
# fmt: on
self.assertTrue(np.allclose(mel_filters, expected))
def test_window_function(self):
window = window_function(16, "hann")
self.assertEqual(len(window), 16)
# fmt: off
expected = np.array([
0.0, 0.03806023, 0.14644661, 0.30865828, 0.5, 0.69134172, 0.85355339, 0.96193977,
1.0, 0.96193977, 0.85355339, 0.69134172, 0.5, 0.30865828, 0.14644661, 0.03806023,
])
# fmt: on
self.assertTrue(np.allclose(window, expected))
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_spectrogram_impulse(self):
waveform = np.zeros(40)
waveform[9] = 1.0 # impulse shifted in time
spec = spectrogram(
waveform,
window_function(12, "hann", frame_length=16),
frame_length=16,
hop_length=4,
power=1.0,
center=True,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (9, 11))
expected = np.array([[0.0, 0.0669873, 0.9330127, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]])
self.assertTrue(np.allclose(spec, expected))
def test_spectrogram_integration_test(self):
waveform = self._load_datasamples(1)[0]
spec = spectrogram(
waveform,
window_function(400, "hann", frame_length=512),
frame_length=512,
hop_length=128,
power=1.0,
center=True,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (257, 732))
# fmt: off
expected = np.array([
0.02464888, 0.04648664, 0.05872392, 0.02311783, 0.0327175 ,
0.02433643, 0.01198814, 0.02055709, 0.01559287, 0.01394357,
0.01299037, 0.01728045, 0.0254554 , 0.02486533, 0.02011792,
0.01755333, 0.02100457, 0.02337024, 0.01436963, 0.01464558,
0.0211017 , 0.0193489 , 0.01272165, 0.01858462, 0.03722598,
0.0456542 , 0.03281558, 0.00620586, 0.02226466, 0.03618042,
0.03508182, 0.02271432, 0.01051649, 0.01225771, 0.02315293,
0.02331886, 0.01417785, 0.0106844 , 0.01791214, 0.017177 ,
0.02125114, 0.05028201, 0.06830665, 0.05216664, 0.01963666,
0.06941418, 0.11513043, 0.12257859, 0.10948435, 0.08568069,
0.05509328, 0.05047818, 0.047112 , 0.05060737, 0.02982424,
0.02803827, 0.02933729, 0.01760491, 0.00587815, 0.02117637,
0.0293578 , 0.03452379, 0.02194803, 0.01676056,
])
# fmt: on
self.assertTrue(np.allclose(spec[:64, 400], expected))
spec = spectrogram(
waveform,
window_function(400, "hann"),
frame_length=400,
hop_length=128,
fft_length=512,
power=1.0,
center=True,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (257, 732))
self.assertTrue(np.allclose(spec[:64, 400], expected))
mel_filters = mel_filter_bank(
num_frequency_bins=256,
num_mel_filters=400,
min_frequency=20,
max_frequency=8000,
sampling_rate=16000,
norm=None,
mel_scale="kaldi",
triangularize_in_mel_space=True,
)
mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
spec = spectrogram(
waveform,
window_function(400, "povey", periodic=False),
frame_length=400,
hop_length=160,
fft_length=512,
power=2.0,
center=False,
pad_mode="reflect",
onesided=True,
preemphasis=0.97,
mel_filters=mel_filters,
log_mel="log",
mel_floor=1.1920928955078125e-07,
remove_dc_offset=True,
)
self.assertEqual(spec.shape, (400, 584))
# fmt: off
expected = np.array([-15.94238515, -8.20712299, -8.22704352, -15.94238515,
-15.94238515, -15.94238515, -15.94238515, -15.94238515,
-6.52463769, -7.73677889, -15.94238515, -15.94238515,
-15.94238515, -15.94238515, -4.18650018, -3.37195286,
-15.94238515, -15.94238515, -15.94238515, -15.94238515,
-4.70190154, -2.4217066 , -15.94238515, -15.94238515,
-15.94238515, -15.94238515, -5.62755239, -3.53385194,
-15.94238515, -15.94238515, -15.94238515, -15.94238515,
-9.43303023, -8.77480925, -15.94238515, -15.94238515,
-15.94238515, -15.94238515, -4.2951092 , -5.51585994,
-15.94238515, -15.94238515, -15.94238515, -4.40151721,
-3.95228878, -15.94238515, -15.94238515, -15.94238515,
-6.10365415, -4.59494697, -15.94238515, -15.94238515,
-15.94238515, -8.10727767, -6.2585298 , -15.94238515,
-15.94238515, -15.94238515, -5.60161702, -4.47217004,
-15.94238515, -15.94238515, -15.94238515, -5.91641988]
)
# fmt: on
self.assertTrue(np.allclose(spec[:64, 400], expected, atol=1e-5))
def test_spectrogram_center_padding(self):
waveform = self._load_datasamples(1)[0]
spec = spectrogram(
waveform,
window_function(512, "hann"),
frame_length=512,
hop_length=128,
center=True,
pad_mode="reflect",
)
self.assertEqual(spec.shape, (257, 732))
# fmt: off
expected = np.array([
0.1287945 , 0.12792738, 0.08311573, 0.03155122, 0.02470202,
0.00727857, 0.00910694, 0.00686163, 0.01238981, 0.01473668,
0.00336144, 0.00370314, 0.00600871, 0.01120164, 0.01942998,
0.03132008, 0.0232842 , 0.01124642, 0.02754783, 0.02423725,
0.00147893, 0.00038027, 0.00112299, 0.00596233, 0.00571529,
0.02084235, 0.0231855 , 0.00810006, 0.01837943, 0.00651339,
0.00093931, 0.00067426, 0.01058399, 0.01270507, 0.00151734,
0.00331913, 0.00302416, 0.01081792, 0.00754549, 0.00148963,
0.00111943, 0.00152573, 0.00608017, 0.01749986, 0.01205949,
0.0143082 , 0.01910573, 0.00413786, 0.03916619, 0.09873404,
0.08302026, 0.02673891, 0.00401255, 0.01397392, 0.00751862,
0.01024884, 0.01544606, 0.00638907, 0.00623633, 0.0085103 ,
0.00217659, 0.00276204, 0.00260835, 0.00299299,
])
# fmt: on
self.assertTrue(np.allclose(spec[:64, 0], expected))
spec = spectrogram(
waveform,
window_function(512, "hann"),
frame_length=512,
hop_length=128,
center=True,
pad_mode="constant",
)
self.assertEqual(spec.shape, (257, 732))
# fmt: off
expected = np.array([
0.06558744, 0.06889656, 0.06263352, 0.04264418, 0.03404115,
0.03244197, 0.02279134, 0.01646339, 0.01452216, 0.00826055,
0.00062093, 0.0031821 , 0.00419456, 0.00689327, 0.01106367,
0.01712119, 0.01721762, 0.00977533, 0.01606626, 0.02275621,
0.01727687, 0.00992739, 0.01217688, 0.01049927, 0.01022947,
0.01302475, 0.01166873, 0.01081812, 0.01057327, 0.00767912,
0.00429567, 0.00089625, 0.00654583, 0.00912084, 0.00700984,
0.00225026, 0.00290545, 0.00667712, 0.00730663, 0.00410813,
0.00073102, 0.00219296, 0.00527618, 0.00996585, 0.01123781,
0.00872816, 0.01165121, 0.02047945, 0.03681747, 0.0514379 ,
0.05137928, 0.03960042, 0.02821562, 0.01813349, 0.01201322,
0.01260964, 0.00900654, 0.00207905, 0.00456714, 0.00850599,
0.00788239, 0.00664407, 0.00824227, 0.00628301,
])
# fmt: on
self.assertTrue(np.allclose(spec[:64, 0], expected))
spec = spectrogram(
waveform,
window_function(512, "hann"),
frame_length=512,
hop_length=128,
center=False,
)
self.assertEqual(spec.shape, (257, 728))
# fmt: off
expected = np.array([
0.00250445, 0.02161521, 0.06232229, 0.04339567, 0.00937727,
0.01080616, 0.00248685, 0.0095264 , 0.00727476, 0.0079152 ,
0.00839946, 0.00254932, 0.00716622, 0.005559 , 0.00272623,
0.00581774, 0.01896395, 0.01829788, 0.01020514, 0.01632692,
0.00870888, 0.02065827, 0.0136022 , 0.0132382 , 0.011827 ,
0.00194505, 0.0189979 , 0.026874 , 0.02194014, 0.01923883,
0.01621437, 0.00661967, 0.00289517, 0.00470257, 0.00957801,
0.00191455, 0.00431664, 0.00544359, 0.01126213, 0.00785778,
0.00423469, 0.01322504, 0.02226548, 0.02318576, 0.03428908,
0.03648811, 0.0202938 , 0.011902 , 0.03226198, 0.06347476,
0.01306318, 0.05308729, 0.05474771, 0.03127991, 0.00998512,
0.01449977, 0.01272741, 0.00868176, 0.00850386, 0.00313876,
0.00811857, 0.00538216, 0.00685749, 0.00535275,
])
# fmt: on
self.assertTrue(np.allclose(spec[:64, 0], expected))
def test_spectrogram_shapes(self):
waveform = self._load_datasamples(1)[0]
spec = spectrogram(
waveform,
window_function(400, "hann"),
frame_length=400,
hop_length=128,
power=1.0,
center=True,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (201, 732))
spec = spectrogram(
waveform,
window_function(400, "hann"),
frame_length=400,
hop_length=128,
power=1.0,
center=False,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (201, 729))
spec = spectrogram(
waveform,
window_function(400, "hann"),
frame_length=400,
hop_length=128,
fft_length=512,
power=1.0,
center=True,
pad_mode="reflect",
onesided=True,
)
self.assertEqual(spec.shape, (257, 732))
spec = spectrogram(
waveform,
window_function(400, "hann", frame_length=512),
frame_length=512,
hop_length=64,
power=1.0,
center=True,
pad_mode="reflect",
onesided=False,
)
self.assertEqual(spec.shape, (512, 1464))
spec = spectrogram(
waveform,
window_function(512, "hann"),
frame_length=512,
hop_length=64,
power=1.0,
center=True,
pad_mode="reflect",
onesided=False,
)
self.assertEqual(spec.shape, (512, 1464))
spec = spectrogram(
waveform,
window_function(512, "hann"),
frame_length=512,
hop_length=512,
power=1.0,
center=True,
pad_mode="reflect",
onesided=False,
)
self.assertEqual(spec.shape, (512, 183))
def test_mel_spectrogram(self):
waveform = self._load_datasamples(1)[0]
mel_filters = mel_filter_bank(
num_frequency_bins=513,
num_mel_filters=13,
min_frequency=100,
max_frequency=4000,
sampling_rate=16000,
norm=None,
mel_scale="htk",
)
self.assertEqual(mel_filters.shape, (513, 13))
spec = spectrogram(
waveform,
window_function(800, "hann", frame_length=1024),
frame_length=1024,
hop_length=128,
power=2.0,
)
self.assertEqual(spec.shape, (513, 732))
spec = spectrogram(
waveform,
window_function(800, "hann", frame_length=1024),
frame_length=1024,
hop_length=128,
power=2.0,
mel_filters=mel_filters,
)
self.assertEqual(spec.shape, (13, 732))
# fmt: off
expected = np.array([
1.08027889e+02, 1.48080673e+01, 7.70758213e+00, 9.57676639e-01,
8.81639061e-02, 5.26073833e-02, 1.52736155e-02, 9.95350117e-03,
7.95364356e-03, 1.01148004e-02, 4.29241020e-03, 9.90708797e-03,
9.44153646e-04
])
# fmt: on
self.assertTrue(np.allclose(spec[:, 300], expected))
def test_spectrogram_power(self):
waveform = self._load_datasamples(1)[0]
spec = spectrogram(
waveform,
window_function(400, "hann", frame_length=512),
frame_length=512,
hop_length=128,
power=None,
)
self.assertEqual(spec.shape, (257, 732))
self.assertEqual(spec.dtype, np.complex64)
# fmt: off
expected = np.array([
0.01452305+0.01820039j, -0.01737362-0.01641946j,
0.0121028 +0.01565081j, -0.02794554-0.03021514j,
0.04719803+0.04086519j, -0.04391563-0.02779365j,
0.05682834+0.01571325j, -0.08604821-0.02023657j,
0.07497991+0.0186641j , -0.06366091-0.00922475j,
0.11003416+0.0114788j , -0.13677941-0.01523552j,
0.10934535-0.00117226j, -0.11635598+0.02551187j,
0.14708674-0.03469823j, -0.1328196 +0.06034218j,
0.12667368-0.13973421j, -0.14764774+0.18912019j,
0.10235471-0.12181523j, -0.00773012+0.04730498j,
-0.01487191-0.07312611j, -0.02739162+0.09619419j,
0.02895459-0.05398273j, 0.01198589+0.05276592j,
-0.02117299-0.10123465j, 0.00666388+0.09526499j,
-0.01672773-0.05649684j, 0.02723125+0.05939891j,
-0.01879361-0.062954j , 0.03686557+0.04568823j,
-0.07394181-0.07949649j, 0.06238583+0.13905765j,
])
# fmt: on
self.assertTrue(np.allclose(spec[64:96, 321], expected))
spec = spectrogram(
waveform,
window_function(400, "hann", frame_length=512),
frame_length=512,
hop_length=128,
power=1.0,
)
self.assertEqual(spec.shape, (257, 732))
self.assertEqual(spec.dtype, np.float64)
# fmt: off
expected = np.array([
0.02328461, 0.02390484, 0.01978448, 0.04115711, 0.0624309 ,
0.05197181, 0.05896072, 0.08839577, 0.07726794, 0.06432579,
0.11063128, 0.13762532, 0.10935163, 0.11911998, 0.15112405,
0.14588428, 0.18860507, 0.23992978, 0.15910825, 0.04793241,
0.07462307, 0.10001811, 0.06125769, 0.05411011, 0.10342509,
0.09549777, 0.05892122, 0.06534349, 0.06569936, 0.05870678,
0.10856833, 0.1524107 , 0.11463385, 0.05766969, 0.12385171,
0.14472842, 0.11978184, 0.10353675, 0.07244056, 0.03461861,
0.02624896, 0.02227475, 0.01238363, 0.00885281, 0.0110049 ,
0.00807005, 0.01033663, 0.01703181, 0.01445856, 0.00585615,
0.0132431 , 0.02754132, 0.01524478, 0.0204908 , 0.07453328,
0.10716327, 0.07195779, 0.08816078, 0.18340898, 0.16449876,
0.12322842, 0.1621659 , 0.12334293, 0.06033659,
])
# fmt: on
self.assertTrue(np.allclose(spec[64:128, 321], expected))
spec = spectrogram(
waveform,
window_function(400, "hann", frame_length=512),
frame_length=512,
hop_length=128,
power=2.0,
)
self.assertEqual(spec.shape, (257, 732))
self.assertEqual(spec.dtype, np.float64)
# fmt: off
expected = np.array([
5.42173162e-04, 5.71441371e-04, 3.91425507e-04, 1.69390778e-03,
3.89761780e-03, 2.70106923e-03, 3.47636663e-03, 7.81381316e-03,
5.97033510e-03, 4.13780799e-03, 1.22392802e-02, 1.89407300e-02,
1.19577805e-02, 1.41895693e-02, 2.28384770e-02, 2.12822221e-02,
3.55718732e-02, 5.75663000e-02, 2.53154356e-02, 2.29751552e-03,
5.56860259e-03, 1.00036217e-02, 3.75250424e-03, 2.92790355e-03,
1.06967501e-02, 9.11982451e-03, 3.47171025e-03, 4.26977174e-03,
4.31640586e-03, 3.44648538e-03, 1.17870830e-02, 2.32290216e-02,
1.31409196e-02, 3.32579296e-03, 1.53392460e-02, 2.09463164e-02,
1.43476883e-02, 1.07198600e-02, 5.24763530e-03, 1.19844836e-03,
6.89007982e-04, 4.96164430e-04, 1.53354369e-04, 7.83722571e-05,
1.21107812e-04, 6.51257360e-05, 1.06845939e-04, 2.90082477e-04,
2.09049831e-04, 3.42945241e-05, 1.75379610e-04, 7.58524227e-04,
2.32403356e-04, 4.19872697e-04, 5.55520924e-03, 1.14839673e-02,
5.17792348e-03, 7.77232368e-03, 3.36388536e-02, 2.70598419e-02,
1.51852425e-02, 2.62977779e-02, 1.52134784e-02, 3.64050455e-03,
])
# fmt: on
self.assertTrue(np.allclose(spec[64:128, 321], expected))
def test_power_to_db(self):
spectrogram = np.zeros((2, 3))
spectrogram[0, 0] = 2.0
spectrogram[0, 1] = 0.5
spectrogram[0, 2] = 0.707
spectrogram[1, 1] = 1.0
output = power_to_db(spectrogram, reference=1.0)
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-100.0, 0.0, -100.0]])
self.assertTrue(np.allclose(output, expected))
output = power_to_db(spectrogram, reference=2.0)
expected = np.array([[0.0, -6.02059991, -4.51610582], [-103.01029996, -3.01029996, -103.01029996]])
self.assertTrue(np.allclose(output, expected))
output = power_to_db(spectrogram, min_value=1e-6)
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-60.0, 0.0, -60.0]])
self.assertTrue(np.allclose(output, expected))
output = power_to_db(spectrogram, db_range=80)
expected = np.array([[3.01029996, -3.01029996, -1.50580586], [-76.98970004, 0.0, -76.98970004]])
self.assertTrue(np.allclose(output, expected))
output = power_to_db(spectrogram, reference=2.0, db_range=80)
expected = np.array([[0.0, -6.02059991, -4.51610582], [-80.0, -3.01029996, -80.0]])
self.assertTrue(np.allclose(output, expected))
output = power_to_db(spectrogram, reference=2.0, min_value=1e-6, db_range=80)
expected = np.array([[0.0, -6.02059991, -4.51610582], [-63.01029996, -3.01029996, -63.01029996]])
self.assertTrue(np.allclose(output, expected))
with pytest.raises(ValueError):
power_to_db(spectrogram, reference=0.0)
with pytest.raises(ValueError):
power_to_db(spectrogram, min_value=0.0)
with pytest.raises(ValueError):
power_to_db(spectrogram, db_range=-80)
def test_amplitude_to_db(self):
spectrogram = np.zeros((2, 3))
spectrogram[0, 0] = 2.0
spectrogram[0, 1] = 0.5
spectrogram[0, 2] = 0.707
spectrogram[1, 1] = 1.0
output = amplitude_to_db(spectrogram, reference=1.0)
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-100.0, 0.0, -100.0]])
self.assertTrue(np.allclose(output, expected))
output = amplitude_to_db(spectrogram, reference=2.0)
expected = np.array([[0.0, -12.04119983, -9.03221164], [-106.02059991, -6.02059991, -106.02059991]])
self.assertTrue(np.allclose(output, expected))
output = amplitude_to_db(spectrogram, min_value=1e-3)
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-60.0, 0.0, -60.0]])
self.assertTrue(np.allclose(output, expected))
output = amplitude_to_db(spectrogram, db_range=80)
expected = np.array([[6.02059991, -6.02059991, -3.01161172], [-73.97940009, 0.0, -73.97940009]])
self.assertTrue(np.allclose(output, expected))
output = amplitude_to_db(spectrogram, reference=2.0, db_range=80)
expected = np.array([[0.0, -12.04119983, -9.03221164], [-80.0, -6.02059991, -80.0]])
self.assertTrue(np.allclose(output, expected))
output = amplitude_to_db(spectrogram, reference=2.0, min_value=1e-3, db_range=80)
expected = np.array([[0.0, -12.04119983, -9.03221164], [-66.02059991, -6.02059991, -66.02059991]])
self.assertTrue(np.allclose(output, expected))
with pytest.raises(ValueError):
amplitude_to_db(spectrogram, reference=0.0)
with pytest.raises(ValueError):
amplitude_to_db(spectrogram, min_value=0.0)
with pytest.raises(ValueError):
amplitude_to_db(spectrogram, db_range=-80)
@require_librosa
def test_chroma_equivalence(self):
num_frequency_bins = 25
num_chroma = 6
sampling_rate = 24000
# test default parameters
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins)
utils_chroma = chroma_filter_bank(
num_frequency_bins=num_frequency_bins, num_chroma=num_chroma, sampling_rate=sampling_rate
)
self.assertTrue(np.allclose(original_chroma, utils_chroma))
# test no weighting_parameters
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins, octwidth=None)
utils_chroma = chroma_filter_bank(
num_frequency_bins=num_frequency_bins,
num_chroma=num_chroma,
sampling_rate=sampling_rate,
weighting_parameters=None,
)
self.assertTrue(np.allclose(original_chroma, utils_chroma))
# test with L1 norm
original_chroma = chroma(sr=sampling_rate, n_chroma=num_chroma, n_fft=num_frequency_bins, norm=1.0)
utils_chroma = chroma_filter_bank(
num_frequency_bins=num_frequency_bins, num_chroma=num_chroma, sampling_rate=sampling_rate, power=1.0
)
self.assertTrue(np.allclose(original_chroma, utils_chroma))
# test starting at 'A' chroma, power = None, tuning = 0, different weighting_parameters
original_chroma = chroma(
sr=sampling_rate,
n_chroma=num_chroma,
n_fft=num_frequency_bins,
norm=None,
base_c=None,
octwidth=1.0,
ctroct=4.0,
)
utils_chroma = chroma_filter_bank(
num_frequency_bins=num_frequency_bins,
num_chroma=num_chroma,
sampling_rate=sampling_rate,
power=None,
start_at_c_chroma=False,
weighting_parameters=(4.0, 1.0),
)
self.assertTrue(np.allclose(original_chroma, utils_chroma))