|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import re |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import direct_transformers_import |
|
|
|
|
|
|
|
|
|
PATH_TO_TRANSFORMERS = "src/transformers" |
|
|
|
|
|
|
|
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS) |
|
|
|
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING |
|
|
|
SPECIAL_CASES_TO_ALLOW = { |
|
|
|
|
|
"JambaConfig": [ |
|
"max_position_embeddings", |
|
"attn_layer_offset", |
|
"attn_layer_period", |
|
"expert_layer_offset", |
|
"expert_layer_period", |
|
], |
|
|
|
"EncodecConfig": ["overlap"], |
|
|
|
"RecurrentGemmaConfig": ["block_types"], |
|
|
|
"MambaConfig": ["expand"], |
|
|
|
"DPRConfig": True, |
|
"FuyuConfig": True, |
|
|
|
"FSMTConfig": ["langs"], |
|
|
|
"GPTNeoConfig": ["attention_types"], |
|
|
|
"EsmConfig": ["is_folding_model"], |
|
|
|
"Mask2FormerConfig": ["ignore_value"], |
|
|
|
|
|
"OneFormerConfig": ["ignore_value", "norm"], |
|
|
|
"GraphormerConfig": ["spatial_pos_max"], |
|
|
|
"T5Config": ["feed_forward_proj"], |
|
|
|
|
|
"MT5Config": ["feed_forward_proj", "tokenizer_class"], |
|
"UMT5Config": ["feed_forward_proj", "tokenizer_class"], |
|
|
|
"LongT5Config": ["feed_forward_proj"], |
|
|
|
"Pop2PianoConfig": ["feed_forward_proj"], |
|
|
|
"SwitchTransformersConfig": ["feed_forward_proj"], |
|
|
|
"BioGptConfig": ["layer_norm_eps"], |
|
|
|
"GLPNConfig": ["layer_norm_eps"], |
|
|
|
"SegformerConfig": ["layer_norm_eps"], |
|
|
|
"CvtConfig": ["layer_norm_eps"], |
|
|
|
"PerceiverConfig": ["layer_norm_eps"], |
|
|
|
"InformerConfig": ["num_static_real_features", "num_time_features"], |
|
|
|
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], |
|
|
|
"AutoformerConfig": ["num_static_real_features", "num_time_features"], |
|
|
|
"SamVisionConfig": ["mlp_ratio"], |
|
|
|
"ClapAudioConfig": ["num_classes"], |
|
|
|
"SpeechT5HifiGanConfig": ["sampling_rate"], |
|
|
|
"UdopConfig": ["feed_forward_proj"], |
|
|
|
"SeamlessM4TConfig": [ |
|
"max_new_tokens", |
|
"t2u_max_new_tokens", |
|
"t2u_decoder_attention_heads", |
|
"t2u_decoder_ffn_dim", |
|
"t2u_decoder_layers", |
|
"t2u_encoder_attention_heads", |
|
"t2u_encoder_ffn_dim", |
|
"t2u_encoder_layers", |
|
"t2u_max_position_embeddings", |
|
], |
|
|
|
"SeamlessM4Tv2Config": [ |
|
"max_new_tokens", |
|
"t2u_decoder_attention_heads", |
|
"t2u_decoder_ffn_dim", |
|
"t2u_decoder_layers", |
|
"t2u_encoder_attention_heads", |
|
"t2u_encoder_ffn_dim", |
|
"t2u_encoder_layers", |
|
"t2u_max_position_embeddings", |
|
"t2u_variance_pred_dropout", |
|
"t2u_variance_predictor_embed_dim", |
|
"t2u_variance_predictor_hidden_dim", |
|
"t2u_variance_predictor_kernel_size", |
|
], |
|
} |
|
|
|
|
|
|
|
SPECIAL_CASES_TO_ALLOW.update( |
|
{ |
|
"CLIPSegConfig": True, |
|
"DeformableDetrConfig": True, |
|
"DetaConfig": True, |
|
"DinatConfig": True, |
|
"DonutSwinConfig": True, |
|
"EfficientFormerConfig": True, |
|
"FastSpeech2ConformerConfig": True, |
|
"FSMTConfig": True, |
|
"JukeboxConfig": True, |
|
"LayoutLMv2Config": True, |
|
"MaskFormerSwinConfig": True, |
|
"MT5Config": True, |
|
|
|
"MptConfig": True, |
|
"MptAttentionConfig": True, |
|
"NatConfig": True, |
|
"OneFormerConfig": True, |
|
"PerceiverConfig": True, |
|
"RagConfig": True, |
|
"SpeechT5Config": True, |
|
"SwinConfig": True, |
|
"Swin2SRConfig": True, |
|
"Swinv2Config": True, |
|
"SwitchTransformersConfig": True, |
|
"TableTransformerConfig": True, |
|
"TapasConfig": True, |
|
"UniSpeechConfig": True, |
|
"UniSpeechSatConfig": True, |
|
"WavLMConfig": True, |
|
"WhisperConfig": True, |
|
|
|
"JukeboxPriorConfig": True, |
|
|
|
"Pix2StructTextConfig": True, |
|
"IdeficsConfig": True, |
|
"IdeficsVisionConfig": True, |
|
"IdeficsPerceiverConfig": True, |
|
} |
|
) |
|
|
|
|
|
def check_attribute_being_used(config_class, attributes, default_value, source_strings): |
|
"""Check if any name in `attributes` is used in one of the strings in `source_strings` |
|
|
|
Args: |
|
config_class (`type`): |
|
The configuration class for which the arguments in its `__init__` will be checked. |
|
attributes (`List[str]`): |
|
The name of an argument (or attribute) and its variant names if any. |
|
default_value (`Any`): |
|
A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`. |
|
source_strings (`List[str]`): |
|
The python source code strings in the same modeling directory where `config_class` is defined. The file |
|
containing the definition of `config_class` should be excluded. |
|
""" |
|
attribute_used = False |
|
for attribute in attributes: |
|
for modeling_source in source_strings: |
|
|
|
if ( |
|
f"config.{attribute}" in modeling_source |
|
or f'getattr(config, "{attribute}"' in modeling_source |
|
or f'getattr(self.config, "{attribute}"' in modeling_source |
|
): |
|
attribute_used = True |
|
|
|
elif ( |
|
re.search( |
|
rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"', |
|
modeling_source, |
|
) |
|
is not None |
|
): |
|
attribute_used = True |
|
|
|
elif attribute in [ |
|
"summary_type", |
|
"summary_use_proj", |
|
"summary_activation", |
|
"summary_last_dropout", |
|
"summary_proj_to_labels", |
|
"summary_first_dropout", |
|
]: |
|
if "SequenceSummary" in modeling_source: |
|
attribute_used = True |
|
if attribute_used: |
|
break |
|
if attribute_used: |
|
break |
|
|
|
|
|
attributes_to_allow = [ |
|
"bos_index", |
|
"eos_index", |
|
"pad_index", |
|
"unk_index", |
|
"mask_index", |
|
"image_size", |
|
"use_cache", |
|
"out_features", |
|
"out_indices", |
|
"sampling_rate", |
|
|
|
"use_pretrained_backbone", |
|
"backbone", |
|
"backbone_config", |
|
"use_timm_backbone", |
|
"backbone_kwargs", |
|
] |
|
attributes_used_in_generation = ["encoder_no_repeat_ngram_size"] |
|
|
|
|
|
case_allowed = True |
|
if not attribute_used: |
|
case_allowed = False |
|
for attribute in attributes: |
|
|
|
if attribute in ["is_encoder_decoder"] and default_value is True: |
|
case_allowed = True |
|
elif attribute in ["tie_word_embeddings"] and default_value is False: |
|
case_allowed = True |
|
|
|
|
|
elif attribute in attributes_to_allow + attributes_used_in_generation: |
|
case_allowed = True |
|
elif attribute.endswith("_token_id"): |
|
case_allowed = True |
|
|
|
|
|
if not case_allowed: |
|
allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, []) |
|
case_allowed = allowed_cases is True or attribute in allowed_cases |
|
|
|
return attribute_used or case_allowed |
|
|
|
|
|
def check_config_attributes_being_used(config_class): |
|
"""Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory |
|
|
|
Args: |
|
config_class (`type`): |
|
The configuration class for which the arguments in its `__init__` will be checked. |
|
""" |
|
|
|
signature = dict(inspect.signature(config_class.__init__).parameters) |
|
parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]] |
|
parameter_defaults = [signature[param].default for param in parameter_names] |
|
|
|
|
|
|
|
reversed_attribute_map = {} |
|
if len(config_class.attribute_map) > 0: |
|
reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()} |
|
|
|
|
|
config_source_file = inspect.getsourcefile(config_class) |
|
model_dir = os.path.dirname(config_source_file) |
|
|
|
modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")] |
|
|
|
|
|
modeling_sources = [] |
|
for path in modeling_paths: |
|
if os.path.isfile(path): |
|
with open(path, encoding="utf8") as fp: |
|
modeling_sources.append(fp.read()) |
|
|
|
unused_attributes = [] |
|
for config_param, default_value in zip(parameter_names, parameter_defaults): |
|
|
|
attributes = [config_param] |
|
|
|
|
|
if config_param in reversed_attribute_map: |
|
attributes.append(reversed_attribute_map[config_param]) |
|
|
|
if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources): |
|
unused_attributes.append(attributes[0]) |
|
|
|
return sorted(unused_attributes) |
|
|
|
|
|
def check_config_attributes(): |
|
"""Check the arguments in `__init__` of all configuration classes are used in python files""" |
|
configs_with_unused_attributes = {} |
|
for _config_class in list(CONFIG_MAPPING.values()): |
|
|
|
if "models.deprecated" in _config_class.__module__: |
|
continue |
|
|
|
config_classes_in_module = [ |
|
cls |
|
for name, cls in inspect.getmembers( |
|
inspect.getmodule(_config_class), |
|
lambda x: inspect.isclass(x) |
|
and issubclass(x, PretrainedConfig) |
|
and inspect.getmodule(x) == inspect.getmodule(_config_class), |
|
) |
|
] |
|
for config_class in config_classes_in_module: |
|
unused_attributes = check_config_attributes_being_used(config_class) |
|
if len(unused_attributes) > 0: |
|
configs_with_unused_attributes[config_class.__name__] = unused_attributes |
|
|
|
if len(configs_with_unused_attributes) > 0: |
|
error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" |
|
for name, attributes in configs_with_unused_attributes.items(): |
|
error += f"{name}: {attributes}\n" |
|
|
|
raise ValueError(error) |
|
|
|
|
|
if __name__ == "__main__": |
|
check_config_attributes() |
|
|