Aston-xMAD's picture
init commit
b37c16f verified
# coding=utf-8
# Copyright 2023 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class BetterTransformerIntegrationTest(unittest.TestCase):
# refer to the full test suite in Optimum library:
# https://github.com/huggingface/optimum/tree/main/tests/bettertransformer
def test_transform_and_reverse(self):
r"""
Classic tests to simply check if the conversion has been successfull.
"""
model_id = "hf-internal-testing/tiny-random-t5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
inp = tokenizer("This is me", return_tensors="pt")
model = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
output = model.generate(**inp)
model = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname)
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())
)
output_from_pretrained = model_reloaded.generate(**inp)
self.assertTrue(torch.allclose(output, output_from_pretrained))
def test_error_save_pretrained(self):
r"""
The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode.
All should be good if the model is reversed.
"""
model_id = "hf-internal-testing/tiny-random-t5"
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
model = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(ValueError):
model.save_pretrained(tmpdirname)
model = model.reverse_bettertransformer()
model.save_pretrained(tmpdirname)