|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
from parameterized import parameterized |
|
|
|
from transformers.testing_utils import require_flax, require_tf, require_torch, require_vision |
|
from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torch_available, is_vision_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
if is_flax_available(): |
|
import jax |
|
|
|
if is_vision_available(): |
|
import PIL.Image |
|
|
|
from transformers.image_transforms import ( |
|
center_crop, |
|
center_to_corners_format, |
|
convert_to_rgb, |
|
corners_to_center_format, |
|
flip_channel_order, |
|
get_resize_output_image_size, |
|
id_to_rgb, |
|
normalize, |
|
pad, |
|
resize, |
|
rgb_to_id, |
|
to_channel_dimension_format, |
|
to_pil_image, |
|
) |
|
|
|
|
|
def get_random_image(height, width, num_channels=3, channels_first=True): |
|
shape = (num_channels, height, width) if channels_first else (height, width, num_channels) |
|
random_array = np.random.randint(0, 256, shape, dtype=np.uint8) |
|
return random_array |
|
|
|
|
|
@require_vision |
|
class ImageTransformsTester(unittest.TestCase): |
|
@parameterized.expand( |
|
[ |
|
("numpy_float_channels_first", (3, 4, 5), np.float32), |
|
("numpy_float_channels_last", (4, 5, 3), np.float32), |
|
("numpy_float_channels_first", (3, 4, 5), np.float64), |
|
("numpy_float_channels_last", (4, 5, 3), np.float64), |
|
("numpy_int_channels_first", (3, 4, 5), np.int32), |
|
("numpy_uint_channels_first", (3, 4, 5), np.uint8), |
|
] |
|
) |
|
@require_vision |
|
def test_to_pil_image(self, name, image_shape, dtype): |
|
image = np.random.randint(0, 256, image_shape).astype(dtype) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
|
|
self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0) |
|
|
|
@parameterized.expand( |
|
[ |
|
("numpy_float_channels_first", (3, 4, 5), np.float32), |
|
("numpy_float_channels_first", (3, 4, 5), np.float64), |
|
("numpy_float_channels_last", (4, 5, 3), np.float32), |
|
("numpy_float_channels_last", (4, 5, 3), np.float64), |
|
] |
|
) |
|
@require_vision |
|
def test_to_pil_image_from_float(self, name, image_shape, dtype): |
|
image = np.random.rand(*image_shape).astype(dtype) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
|
|
self.assertTrue(np.abs(np.asarray(pil_image)).sum() > 0) |
|
|
|
|
|
image = np.random.randn(*image_shape).astype(dtype) |
|
with self.assertRaises(ValueError): |
|
to_pil_image(image) |
|
|
|
@require_vision |
|
def test_to_pil_image_from_mask(self): |
|
|
|
image = np.random.randint(0, 2, (3, 4, 5)).astype(np.uint8) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
np_img = np.asarray(pil_image) |
|
self.assertTrue(np_img.min() == 0) |
|
self.assertTrue(np_img.max() == 1) |
|
|
|
image = np.random.randint(0, 2, (3, 4, 5)).astype(np.float32) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
np_img = np.asarray(pil_image) |
|
self.assertTrue(np_img.min() == 0) |
|
self.assertTrue(np_img.max() == 1) |
|
|
|
@require_tf |
|
def test_to_pil_image_from_tensorflow(self): |
|
|
|
image = tf.random.uniform((3, 4, 5)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
|
|
image = tf.random.uniform((4, 5, 3)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
@require_torch |
|
def test_to_pil_image_from_torch(self): |
|
|
|
image = torch.rand((3, 4, 5)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
|
|
image = torch.rand((4, 5, 3)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
@require_flax |
|
def test_to_pil_image_from_jax(self): |
|
key = jax.random.PRNGKey(0) |
|
|
|
image = jax.random.uniform(key, (3, 4, 5)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
|
|
image = jax.random.uniform(key, (4, 5, 3)) |
|
pil_image = to_pil_image(image) |
|
self.assertIsInstance(pil_image, PIL.Image.Image) |
|
self.assertEqual(pil_image.size, (5, 4)) |
|
|
|
def test_to_channel_dimension_format(self): |
|
|
|
image = np.random.rand(3, 4, 5) |
|
image = to_channel_dimension_format(image, "channels_first") |
|
self.assertEqual(image.shape, (3, 4, 5)) |
|
|
|
image = np.random.rand(4, 5, 3) |
|
image = to_channel_dimension_format(image, "channels_last") |
|
self.assertEqual(image.shape, (4, 5, 3)) |
|
|
|
|
|
image = np.random.rand(3, 4, 5) |
|
image = to_channel_dimension_format(image, "channels_last") |
|
self.assertEqual(image.shape, (4, 5, 3)) |
|
|
|
image = np.random.rand(4, 5, 3) |
|
image = to_channel_dimension_format(image, "channels_first") |
|
self.assertEqual(image.shape, (3, 4, 5)) |
|
|
|
|
|
image = np.random.rand(4, 5, 6) |
|
image = to_channel_dimension_format(image, "channels_first", input_channel_dim="channels_last") |
|
self.assertEqual(image.shape, (6, 4, 5)) |
|
|
|
def test_get_resize_output_image_size(self): |
|
image = np.random.randint(0, 256, (3, 224, 224)) |
|
|
|
|
|
self.assertEqual(get_resize_output_image_size(image, 10), (10, 10)) |
|
self.assertEqual(get_resize_output_image_size(image, [10]), (10, 10)) |
|
self.assertEqual(get_resize_output_image_size(image, (10,)), (10, 10)) |
|
|
|
|
|
self.assertEqual(get_resize_output_image_size(image, (10, 20)), (10, 20)) |
|
self.assertEqual(get_resize_output_image_size(image, [10, 20]), (10, 20)) |
|
self.assertEqual(get_resize_output_image_size(image, (10, 20), default_to_square=True), (10, 20)) |
|
|
|
self.assertEqual(get_resize_output_image_size(image, (10, 20), max_size=5), (10, 20)) |
|
|
|
|
|
image = np.random.randint(0, 256, (3, 50, 40)) |
|
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (25, 20)) |
|
|
|
|
|
image = np.random.randint(0, 256, (3, 40, 50)) |
|
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False), (20, 25)) |
|
|
|
|
|
image = np.random.randint(0, 256, (3, 50, 40)) |
|
self.assertEqual(get_resize_output_image_size(image, 20, default_to_square=False, max_size=22), (22, 17)) |
|
|
|
|
|
|
|
image = np.random.randint(0, 256, (4, 50, 40)) |
|
self.assertEqual( |
|
get_resize_output_image_size(image, 20, default_to_square=False, input_data_format="channels_first"), |
|
(25, 20), |
|
) |
|
|
|
|
|
|
|
image = np.random.randint(0, 256, (3, 18, 97)) |
|
resized_image = resize(image, (3, 20)) |
|
self.assertEqual(resized_image.shape, (3, 3, 20)) |
|
|
|
|
|
image = np.random.randint(0, 256, (18, 97, 3)) |
|
resized_image = resize(image, (3, 20)) |
|
self.assertEqual(resized_image.shape, (3, 20, 3)) |
|
|
|
image = np.random.randint(0, 256, (3, 18, 97)) |
|
resized_image = resize(image, (3, 20), data_format="channels_last") |
|
self.assertEqual(resized_image.shape, (3, 20, 3)) |
|
|
|
image = np.random.randint(0, 256, (18, 97, 3)) |
|
resized_image = resize(image, (3, 20), data_format="channels_first") |
|
self.assertEqual(resized_image.shape, (3, 3, 20)) |
|
|
|
def test_resize(self): |
|
image = np.random.randint(0, 256, (3, 224, 224)) |
|
|
|
|
|
resized_image = resize(image, (30, 40)) |
|
self.assertIsInstance(resized_image, np.ndarray) |
|
self.assertEqual(resized_image.shape, (3, 30, 40)) |
|
|
|
|
|
resized_image = resize(image, (30, 40), data_format="channels_last") |
|
self.assertIsInstance(resized_image, np.ndarray) |
|
self.assertEqual(resized_image.shape, (30, 40, 3)) |
|
|
|
|
|
resized_image = resize(image, (30, 40), return_numpy=False) |
|
self.assertIsInstance(resized_image, PIL.Image.Image) |
|
|
|
self.assertEqual(resized_image.size, (40, 30)) |
|
|
|
|
|
image = np.random.rand(3, 224, 224) |
|
resized_image = resize(image, (30, 40)) |
|
self.assertIsInstance(resized_image, np.ndarray) |
|
self.assertEqual(resized_image.shape, (3, 30, 40)) |
|
self.assertTrue(np.all(resized_image >= 0)) |
|
self.assertTrue(np.all(resized_image <= 1)) |
|
|
|
|
|
image = np.random.randint(0, 256, (4, 224, 224)) |
|
resized_image = resize(image, (30, 40), input_data_format="channels_first") |
|
self.assertIsInstance(resized_image, np.ndarray) |
|
self.assertEqual(resized_image.shape, (4, 30, 40)) |
|
|
|
def test_normalize(self): |
|
image = np.random.randint(0, 256, (224, 224, 3)) / 255 |
|
|
|
|
|
|
|
with self.assertRaises(ValueError): |
|
normalize(5, 5, 5) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
normalize(image, mean=(0.5, 0.6), std=1) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
normalize(image, mean=1, std=(0.5, 0.6)) |
|
|
|
|
|
|
|
mean = (0.5, 0.6, 0.7) |
|
std = (0.1, 0.2, 0.3) |
|
expected_image = ((image - mean) / std).transpose((2, 0, 1)) |
|
|
|
normalized_image = normalize(image, mean=mean, std=std, data_format="channels_first") |
|
self.assertIsInstance(normalized_image, np.ndarray) |
|
self.assertEqual(normalized_image.shape, (3, 224, 224)) |
|
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6)) |
|
|
|
|
|
image = np.random.randint(0, 256, (224, 224, 4)) / 255 |
|
mean = (0.5, 0.6, 0.7, 0.8) |
|
std = (0.1, 0.2, 0.3, 0.4) |
|
expected_image = (image - mean) / std |
|
self.assertTrue( |
|
np.allclose( |
|
normalize(image, mean=mean, std=std, input_data_format="channels_last"), expected_image, atol=1e-6 |
|
) |
|
) |
|
|
|
|
|
image = np.random.randint(0, 256, (224, 224, 3)).astype(np.float32) / 255 |
|
mean = (0.5, 0.6, 0.7) |
|
std = (0.1, 0.2, 0.3) |
|
expected_image = ((image - mean) / std).astype(np.float32) |
|
normalized_image = normalize(image, mean=mean, std=std) |
|
self.assertEqual(normalized_image.dtype, np.float32) |
|
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6)) |
|
|
|
|
|
image = np.random.randint(0, 256, (224, 224, 3)).astype(np.float16) / 255 |
|
mean = (0.5, 0.6, 0.7) |
|
std = (0.1, 0.2, 0.3) |
|
|
|
|
|
cast_mean = np.array(mean, dtype=np.float16) |
|
cast_std = np.array(std, dtype=np.float16) |
|
expected_image = (image - cast_mean) / cast_std |
|
normalized_image = normalize(image, mean=mean, std=std) |
|
self.assertEqual(normalized_image.dtype, np.float16) |
|
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6)) |
|
|
|
|
|
image = np.random.randint(0, 2, (224, 224, 3), dtype=np.uint8) |
|
mean = (0.5, 0.6, 0.7) |
|
std = (0.1, 0.2, 0.3) |
|
expected_image = (image.astype(np.float32) - mean) / std |
|
normalized_image = normalize(image, mean=mean, std=std) |
|
self.assertEqual(normalized_image.dtype, np.float32) |
|
self.assertTrue(np.allclose(normalized_image, expected_image, atol=1e-6)) |
|
|
|
def test_center_crop(self): |
|
image = np.random.randint(0, 256, (3, 224, 224)) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
center_crop(image, 10) |
|
|
|
|
|
|
|
expected_image = image[:, 52:172, 82:142].transpose(1, 2, 0) |
|
cropped_image = center_crop(image, (120, 60), data_format="channels_last") |
|
self.assertIsInstance(cropped_image, np.ndarray) |
|
self.assertEqual(cropped_image.shape, (120, 60, 3)) |
|
self.assertTrue(np.allclose(cropped_image, expected_image)) |
|
|
|
|
|
expected_image = np.zeros((300, 260, 3)) |
|
expected_image[38:262, 18:242, :] = image.transpose((1, 2, 0)) |
|
cropped_image = center_crop(image, (300, 260), data_format="channels_last") |
|
self.assertIsInstance(cropped_image, np.ndarray) |
|
self.assertEqual(cropped_image.shape, (300, 260, 3)) |
|
self.assertTrue(np.allclose(cropped_image, expected_image)) |
|
|
|
|
|
image = np.random.randint(0, 256, (224, 224, 4)) |
|
expected_image = image[52:172, 82:142, :] |
|
self.assertTrue(np.allclose(center_crop(image, (120, 60), input_data_format="channels_last"), expected_image)) |
|
|
|
def test_center_to_corners_format(self): |
|
bbox_center = np.array([[10, 20, 4, 8], [15, 16, 3, 4]]) |
|
expected = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]]) |
|
self.assertTrue(np.allclose(center_to_corners_format(bbox_center), expected)) |
|
|
|
|
|
self.assertTrue(np.allclose(corners_to_center_format(center_to_corners_format(bbox_center)), bbox_center)) |
|
|
|
def test_corners_to_center_format(self): |
|
bbox_corners = np.array([[8, 16, 12, 24], [13.5, 14, 16.5, 18]]) |
|
expected = np.array([[10, 20, 4, 8], [15, 16, 3, 4]]) |
|
self.assertTrue(np.allclose(corners_to_center_format(bbox_corners), expected)) |
|
|
|
|
|
self.assertTrue(np.allclose(center_to_corners_format(corners_to_center_format(bbox_corners)), bbox_corners)) |
|
|
|
def test_rgb_to_id(self): |
|
|
|
rgb = [125, 4, 255] |
|
self.assertEqual(rgb_to_id(rgb), 16712829) |
|
|
|
|
|
color = np.array( |
|
[ |
|
[ |
|
[213, 54, 165], |
|
[88, 207, 39], |
|
[156, 108, 128], |
|
], |
|
[ |
|
[183, 194, 46], |
|
[137, 58, 88], |
|
[114, 131, 233], |
|
], |
|
] |
|
) |
|
expected = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]]) |
|
self.assertTrue(np.allclose(rgb_to_id(color), expected)) |
|
|
|
def test_id_to_rgb(self): |
|
|
|
self.assertEqual(id_to_rgb(16712829), [125, 4, 255]) |
|
|
|
|
|
id_array = np.array([[10827477, 2608984, 8416412], [3064503, 5782153, 15303538]]) |
|
color = np.array( |
|
[ |
|
[ |
|
[213, 54, 165], |
|
[88, 207, 39], |
|
[156, 108, 128], |
|
], |
|
[ |
|
[183, 194, 46], |
|
[137, 58, 88], |
|
[114, 131, 233], |
|
], |
|
] |
|
) |
|
self.assertTrue(np.allclose(id_to_rgb(id_array), color)) |
|
|
|
def test_pad(self): |
|
|
|
image = np.array([[ |
|
[0, 1], |
|
[2, 3], |
|
]]) |
|
|
|
|
|
|
|
with self.assertRaises(ValueError): |
|
pad(image, 10, mode="unknown") |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
|
|
pad(image, (5, 10, 10)) |
|
|
|
|
|
|
|
expected_image = np.array([ |
|
[[0, 0, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 2, 3, 0], |
|
[0, 0, 0, 0]], |
|
]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, 1))) |
|
|
|
|
|
|
|
expected_image = np.array( |
|
[[0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0], |
|
[0, 0, 0, 1, 0], |
|
[0, 0, 2, 3, 0], |
|
[0, 0, 0, 0, 0]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, (2, 1)))) |
|
|
|
|
|
|
|
expected_image = np.array([[ |
|
[9, 9], |
|
[9, 9], |
|
[0, 1], |
|
[2, 3], |
|
[9, 9] |
|
]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, ((2, 1), (0, 0)), constant_values=9))) |
|
|
|
|
|
|
|
expected_image = np.array([[ |
|
[8, 8, 0, 1, 9], |
|
[8, 8, 2, 3, 9], |
|
[8, 8, 7, 7, 9], |
|
[8, 8, 7, 7, 9] |
|
]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), constant_values=((6, 7), (8, 9))))) |
|
|
|
|
|
image = np.array([[ |
|
[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8], |
|
]]) |
|
|
|
|
|
|
|
|
|
expected_image = np.array([[ |
|
[2, 1, 0, 1, 2, 1], |
|
[5, 4, 3, 4, 5, 4], |
|
[8, 7, 6, 7, 8, 7], |
|
[5, 4, 3, 4, 5, 4], |
|
[2, 1, 0, 1, 2, 1], |
|
]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect"))) |
|
|
|
|
|
|
|
expected_image = np.array([[ |
|
[0, 0, 0, 1, 2, 2], |
|
[3, 3, 3, 4, 5, 5], |
|
[6, 6, 6, 7, 8, 8], |
|
[6, 6, 6, 7, 8, 8], |
|
[6, 6, 6, 7, 8, 8], |
|
]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="replicate"))) |
|
|
|
|
|
|
|
expected_image = np.array([[ |
|
[1, 0, 0, 1, 2, 2], |
|
[4, 3, 3, 4, 5, 5], |
|
[7, 6, 6, 7, 8, 8], |
|
[7, 6, 6, 7, 8, 8], |
|
[4, 3, 3, 4, 5, 5], |
|
]]) |
|
|
|
self.assertTrue(np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="symmetric"))) |
|
|
|
|
|
|
|
|
|
image = np.array([[ |
|
[0, 1], |
|
[2, 3], |
|
]]) |
|
expected_image = np.array([ |
|
[[0], [1], [0], [1], [0]], |
|
[[2], [3], [2], [3], [2]], |
|
[[0], [1], [0], [1], [0]], |
|
[[2], [3], [2], [3], [2]] |
|
]) |
|
|
|
self.assertTrue( |
|
np.allclose(expected_image, pad(image, ((0, 2), (2, 1)), mode="reflect", data_format="channels_last")) |
|
) |
|
|
|
|
|
|
|
image = np.array([ |
|
[[0, 1], [2, 3]], |
|
]) |
|
expected_image = np.array([ |
|
[[0, 0], [0, 1], [2, 3]], |
|
[[0, 0], [0, 0], [0, 0]], |
|
]) |
|
|
|
self.assertTrue( |
|
np.allclose( |
|
expected_image, pad(image, ((0, 1), (1, 0)), mode="constant", input_data_format="channels_last") |
|
) |
|
) |
|
|
|
@require_vision |
|
def test_convert_to_rgb(self): |
|
|
|
image = np.array([[[1, 2, 3, 4], [5, 6, 7, 8]]], dtype=np.uint8) |
|
pil_image = PIL.Image.fromarray(image) |
|
self.assertEqual(pil_image.mode, "RGBA") |
|
self.assertEqual(pil_image.size, (2, 1)) |
|
|
|
|
|
rgb_image = convert_to_rgb(image) |
|
self.assertEqual(rgb_image.shape, (1, 2, 4)) |
|
self.assertTrue(np.allclose(rgb_image, image)) |
|
|
|
|
|
rgb_image = convert_to_rgb(pil_image) |
|
self.assertEqual(rgb_image.mode, "RGB") |
|
self.assertEqual(rgb_image.size, (2, 1)) |
|
self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[1, 2, 3], [5, 6, 7]]], dtype=np.uint8))) |
|
|
|
|
|
image = np.array([[0, 255]], dtype=np.uint8) |
|
pil_image = PIL.Image.fromarray(image) |
|
self.assertEqual(pil_image.mode, "L") |
|
self.assertEqual(pil_image.size, (2, 1)) |
|
rgb_image = convert_to_rgb(pil_image) |
|
self.assertEqual(rgb_image.mode, "RGB") |
|
self.assertEqual(rgb_image.size, (2, 1)) |
|
self.assertTrue(np.allclose(np.array(rgb_image), np.array([[[0, 0, 0], [255, 255, 255]]], dtype=np.uint8))) |
|
|
|
def test_flip_channel_order(self): |
|
|
|
img_channels_first = np.array([ |
|
[[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7]], |
|
|
|
[[ 8, 9, 10, 11], |
|
[12, 13, 14, 15]], |
|
|
|
[[16, 17, 18, 19], |
|
[20, 21, 22, 23]], |
|
]) |
|
|
|
img_channels_last = np.moveaxis(img_channels_first, 0, -1) |
|
|
|
flipped_img_channels_first = np.array([ |
|
[[16, 17, 18, 19], |
|
[20, 21, 22, 23]], |
|
|
|
[[ 8, 9, 10, 11], |
|
[12, 13, 14, 15]], |
|
|
|
[[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7]], |
|
]) |
|
|
|
flipped_img_channels_last = np.moveaxis(flipped_img_channels_first, 0, -1) |
|
|
|
self.assertTrue(np.allclose(flip_channel_order(img_channels_first), flipped_img_channels_first)) |
|
self.assertTrue( |
|
np.allclose(flip_channel_order(img_channels_first, "channels_last"), flipped_img_channels_last) |
|
) |
|
|
|
self.assertTrue(np.allclose(flip_channel_order(img_channels_last), flipped_img_channels_last)) |
|
self.assertTrue( |
|
np.allclose(flip_channel_order(img_channels_last, "channels_first"), flipped_img_channels_first) |
|
) |
|
|
|
|
|
|
|
img_channels_first = np.array([ |
|
[[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7]], |
|
|
|
[[ 8, 9, 10, 11], |
|
[12, 13, 14, 15]], |
|
]) |
|
|
|
flipped_img_channels_first = img_channels_first[::-1, :, :] |
|
self.assertTrue( |
|
np.allclose( |
|
flip_channel_order(img_channels_first, input_data_format="channels_first"), flipped_img_channels_first |
|
) |
|
) |
|
|