# coding=utf-8 # Copyright 2020 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import ( AutoModelForSeq2SeqLM, BertTokenizer, DataCollatorForSeq2Seq, EncoderDecoderModel, GenerationConfig, Seq2SeqTrainer, Seq2SeqTrainingArguments, T5Tokenizer, ) from transformers.testing_utils import TestCasePlus, require_sentencepiece, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets @require_sentencepiece class Seq2seqTrainerTester(TestCasePlus): @slow @require_torch def test_finetune_bert2bert(self): bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny") tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size bert2bert.config.eos_token_id = tokenizer.sep_token_id bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id bert2bert.config.max_length = 128 train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]") val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]") train_dataset = train_dataset.select(range(32)) val_dataset = val_dataset.select(range(16)) batch_size = 4 def _map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] [EOS] inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512) outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] batch["decoder_attention_mask"] = outputs.attention_mask assert all(len(x) == 512 for x in inputs.input_ids) assert all(len(x) == 128 for x in outputs.input_ids) return batch def _compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True) accuracy = sum([int(pred_str[i] == label_str[i]) for i in range(len(pred_str))]) / len(pred_str) return {"accuracy": accuracy} # map train dataset train_dataset = train_dataset.map( _map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( _map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) output_dir = self.get_auto_remove_tmp_dir() training_args = Seq2SeqTrainingArguments( output_dir=output_dir, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_with_generate=True, eval_strategy="steps", do_train=True, do_eval=True, warmup_steps=0, eval_steps=2, logging_steps=2, ) # instantiate trainer trainer = Seq2SeqTrainer( model=bert2bert, args=training_args, compute_metrics=_compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, tokenizer=tokenizer, ) # start training trainer.train() @slow @require_torch def test_return_sequences(self): # Tests that the number of generated sequences is correct when num_return_sequences > 1 # and essentially ensuring that `accelerator.gather()` is used instead of `gather_for_metrics` INPUT_COLUMN = "question" TARGET_COLUMN = "answer" MAX_INPUT_LENGTH = 256 MAX_TARGET_LENGTH = 256 dataset = datasets.load_dataset("gsm8k", "main", split="train[:38]") model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest") gen_config = GenerationConfig.from_pretrained( "google-t5/t5-small", max_length=None, min_length=None, max_new_tokens=256, min_new_tokens=1, num_beams=5 ) training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True) trainer = Seq2SeqTrainer( model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=lambda x: {"samples": x[0].shape[0]}, ) def prepare_data(examples): # Remove pairs where at least one record is none inputs = examples[INPUT_COLUMN] targets = examples[TARGET_COLUMN] model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, truncation=True) labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs prepared_dataset = dataset.map(prepare_data, batched=True, remove_columns=[INPUT_COLUMN, TARGET_COLUMN]) dataset_len = len(prepared_dataset) # 38 for num_return_sequences in range(3, 0, -1): gen_config.num_return_sequences = num_return_sequences metrics = trainer.evaluate(eval_dataset=prepared_dataset, generation_config=gen_config) assert ( metrics["eval_samples"] == dataset_len * num_return_sequences ), f"Got {metrics['eval_samples']}, expected: {dataset_len * num_return_sequences}" @require_torch def test_bad_generation_config_fail_early(self): # Tests that a bad geneartion config causes the trainer to fail early model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small") tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small") data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest") gen_config = GenerationConfig(do_sample=False, top_p=0.9) # bad: top_p is not compatible with do_sample=False training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True, generation_config=gen_config) with self.assertRaises(ValueError) as exc: _ = Seq2SeqTrainer( model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=lambda x: {"samples": x[0].shape[0]}, ) self.assertIn("The loaded generation config instance is invalid", str(exc.exception))