File size: 4,608 Bytes
9382e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import json
import os
import time
import torch
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

# Environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# Load model and tokenizer
def load_model_and_tokenizer(model_name, dtype):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    special_tokens = {"pad_token": "<PAD>"}
    tokenizer.add_special_tokens(special_tokens)
    
    config = AutoConfig.from_pretrained(model_name)
    if dtype == "bf16":
        dtype = torch.bfloat16
    elif dtype == "fp16":
        dtype = torch.float16
    elif dtype == "fp32":
        dtype = torch.float32

    model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")

    if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
        model.resize_token_embeddings(len(tokenizer))

    tokenizer.padding_side = "left"
    model.config.pad_token_id = tokenizer.pad_token_id

    return model, tokenizer

# Format response
def format_response(dialog, response):
    formatted_dialog = dialog.copy()
    formatted_dialog.append({"role": "assistant", "content": response})
    return formatted_dialog

# Load questions
def load_questions(prompts_path, num_questions, custom_question):
    with open(prompts_path, "r") as file:
        dialogs = json.load(file)
    
    if custom_question and custom_question.strip():
        custom_dialog = [{"role": "user", "content": custom_question}]
        dialogs.insert(0, custom_dialog)
    
    dialogs = dialogs[:num_questions]
    return dialogs

# Inference
def infer(model_name, dialogs, num_new_tokens, temperature, dtype):
    model, tokenizer = load_model_and_tokenizer(model_name, dtype)
    batch_inputs = [
        tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
        for dialog in dialogs
    ]

    responses = []
    for i in range(len(dialogs)):
        batch = batch_inputs[i:i+1]

        encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt")
        input_ids = encoded_inputs["input_ids"].to(model.device)
        attention_mask = encoded_inputs["attention_mask"].to(model.device)

        with torch.no_grad():
            output_tokens = model.generate(
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=num_new_tokens,
                do_sample=True,
                temperature=temperature,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )

        decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)

        for j, response in enumerate(decoded_outputs):
            original_dialog = dialogs[i + j]
            formatted_response = format_response(original_dialog, response)
            responses.append(formatted_response)

        torch.cuda.empty_cache()

    results = {
        "Responses": responses
    }

    return results

# Demo function
def demo(num_new_tokens, temperature, num_questions, custom_question):
    dialogs = load_questions("chats_sys_none.json", num_questions, custom_question)
    results = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16")
    return results

# Load JSON data
with open("chats_sys_none.json", "r") as file:
    json_data = json.load(file)
json_data_str = json.dumps(json_data, indent=2)

# Show JSON function
def show_json():
    return json_data_str

# Gradio interface
interface = gr.Interface(
    fn=demo,
    inputs=[
        gr.Slider(label="Number of New Tokens", minimum=1, maximum=1024, step=1, value=512),
        gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4),
        gr.Slider(minimum=20, maximum=100, step=1, label="Number of Questions", value=20),
        gr.Textbox(label="Custom Question", placeholder="Type your custom question here..."),
    ],
    outputs=[
        gr.JSON(label="Responses")
    ],
    title="LLM Inference Demo",
    description="A demo for running LLM inference using Gradio and Hugging Face.",
    live=False
)

json_interface = gr.Interface(
    fn=show_json,
    inputs=[],
    outputs=[
        gr.HTML("<pre>{}</pre>".format(json_data_str))
    ],
    live=False
)

app = gr.Blocks()

with app:
    with gr.Tab("LLM Inference Demo"):
        interface.render()
    with gr.Tab("Show JSON"):
        json_interface.render()

if __name__ == "__main__":
    app.launch()