File size: 4,608 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import json
import os
import time
import torch
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
# Environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Load model and tokenizer
def load_model_and_tokenizer(model_name, dtype):
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
if dtype == "bf16":
dtype = torch.bfloat16
elif dtype == "fp16":
dtype = torch.float16
elif dtype == "fp32":
dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
# Format response
def format_response(dialog, response):
formatted_dialog = dialog.copy()
formatted_dialog.append({"role": "assistant", "content": response})
return formatted_dialog
# Load questions
def load_questions(prompts_path, num_questions, custom_question):
with open(prompts_path, "r") as file:
dialogs = json.load(file)
if custom_question and custom_question.strip():
custom_dialog = [{"role": "user", "content": custom_question}]
dialogs.insert(0, custom_dialog)
dialogs = dialogs[:num_questions]
return dialogs
# Inference
def infer(model_name, dialogs, num_new_tokens, temperature, dtype):
model, tokenizer = load_model_and_tokenizer(model_name, dtype)
batch_inputs = [
tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
for dialog in dialogs
]
responses = []
for i in range(len(dialogs)):
batch = batch_inputs[i:i+1]
encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt")
input_ids = encoded_inputs["input_ids"].to(model.device)
attention_mask = encoded_inputs["attention_mask"].to(model.device)
with torch.no_grad():
output_tokens = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=num_new_tokens,
do_sample=True,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
for j, response in enumerate(decoded_outputs):
original_dialog = dialogs[i + j]
formatted_response = format_response(original_dialog, response)
responses.append(formatted_response)
torch.cuda.empty_cache()
results = {
"Responses": responses
}
return results
# Demo function
def demo(num_new_tokens, temperature, num_questions, custom_question):
dialogs = load_questions("chats_sys_none.json", num_questions, custom_question)
results = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16")
return results
# Load JSON data
with open("chats_sys_none.json", "r") as file:
json_data = json.load(file)
json_data_str = json.dumps(json_data, indent=2)
# Show JSON function
def show_json():
return json_data_str
# Gradio interface
interface = gr.Interface(
fn=demo,
inputs=[
gr.Slider(label="Number of New Tokens", minimum=1, maximum=1024, step=1, value=512),
gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4),
gr.Slider(minimum=20, maximum=100, step=1, label="Number of Questions", value=20),
gr.Textbox(label="Custom Question", placeholder="Type your custom question here..."),
],
outputs=[
gr.JSON(label="Responses")
],
title="LLM Inference Demo",
description="A demo for running LLM inference using Gradio and Hugging Face.",
live=False
)
json_interface = gr.Interface(
fn=show_json,
inputs=[],
outputs=[
gr.HTML("<pre>{}</pre>".format(json_data_str))
],
live=False
)
app = gr.Blocks()
with app:
with gr.Tab("LLM Inference Demo"):
interface.render()
with gr.Tab("Show JSON"):
json_interface.render()
if __name__ == "__main__":
app.launch()
|