File size: 8,499 Bytes
9382e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import json
import os
import time
import torch
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import random

# Environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

# Global variables to store the model and tokenizer
model = None
tokenizer = None

# Load model and tokenizer
def load_model_and_tokenizer(model_name, dtype, kv_bits):
    global model, tokenizer
    if model is None or tokenizer is None:
        print("Loading model and tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        special_tokens = {"pad_token": "<PAD>"}
        tokenizer.add_special_tokens(special_tokens)

        config = AutoConfig.from_pretrained(model_name)
        if kv_bits != "unquantized":
            quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad"
            setattr(config, "quantizer_path", quantizer_path)

        if dtype == "bf16":
            dtype = torch.bfloat16
        elif dtype == "fp16":
            dtype = torch.float16
        elif dtype == "fp32":
            dtype = torch.float32

        model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")

        if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
            model.resize_token_embeddings(len(tokenizer))

        tokenizer.padding_side = "left"
        model.config.pad_token_id = tokenizer.pad_token_id

    return model, tokenizer

# Format response
def format_response(dialog, response):
    question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found')
    answer = response.split("assistant")[-1].strip()
    return {"question": question, "answer": answer}

# Load questions
def load_questions(prompts_path, custom_questions):
    with open(prompts_path, "r") as file:
        dialogs = json.load(file)
    
    selected_dialogs = []

    if custom_questions:
        for question in custom_questions:
            if question.strip():
                custom_dialog = [{"role": "user", "content": question}]
                selected_dialogs.append(custom_dialog)
    
    num_questions = 60 - len(selected_dialogs)
    random.shuffle(dialogs)
    selected_dialogs.extend(dialogs[:num_questions])
    
    return selected_dialogs[:60]

# Inference
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()):
    print("Starting inference...")
    model, tokenizer = load_model_and_tokenizer(model_name, dtype, kv_bits)
    batch_inputs = [
        tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
        for dialog in dialogs
    ]

    responses = []
    start_time = time.time()

    batch_size = 30  # Set batch size for processing, this can be adjusted
    num_dialogs = len(dialogs)
    total_time = 0
    total_tokens = 0
    num_batches = (num_dialogs + batch_size - 1) // batch_size

    for batch_idx in range(num_batches):
        start_idx = batch_idx * batch_size
        end_idx = min(start_idx + batch_size, num_dialogs)
        batch = batch_inputs[start_idx:end_idx]

        encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt")
        input_ids = encoded_inputs["input_ids"].to(model.device)
        attention_mask = encoded_inputs["attention_mask"].to(model.device)

        with torch.no_grad():
            torch.cuda.synchronize()
            batch_start_time = time.perf_counter()
            
            # Generate responses and measure time to first token
            output_tokens = model.generate(
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=num_new_tokens,
                do_sample=True,
                temperature=temperature,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )

            torch.cuda.synchronize()
            batch_end_time = time.perf_counter()

            batch_time = batch_end_time - batch_start_time
            total_time += batch_time
            total_tokens += output_tokens.numel()

            # Calculate TTFT
            if batch_idx == 0:
                ttft = batch_time / input_ids.size(0)  # Time to first token for the first batch

        decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)

        for i, response in enumerate(decoded_outputs):
            original_dialog = dialogs[start_idx + i]
            formatted_response = format_response(original_dialog, response)
            responses.append(formatted_response)
            
            formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer']}" for res in responses])
            yield formatted_responses
            progress((batch_idx + 1) / num_batches, desc="Processing batches")

    elapsed_time = time.time() - start_time
    tokens_per_second = total_tokens / total_time if total_time > 0 else 0
    print(f"Inference completed in {elapsed_time:.2f} seconds.")
    
    yield {
        "Time Taken (seconds)": elapsed_time,
        "Tokens per Second": tokens_per_second,
        "Time to First Token (TTFT, seconds)": ttft,
        "Formatted Responses": formatted_responses
    }

# Demo function
def demo(num_new_tokens, temperature, custom_questions_text, kv_bits, progress=gr.Progress()):
    custom_questions = custom_questions_text.split("\n")
    print("Loading questions...")
    dialogs = load_questions("chats_sys_none.json", custom_questions)
    print(f"{len(dialogs)} questions loaded. Starting inference...")
    
    result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress)
    
    formatted_responses = ""
    for result in result_gen:
        if isinstance(result, str):
            formatted_responses = result
            yield None, None, None, formatted_responses
        else:
            time_taken = result["Time Taken (seconds)"]
            tokens_per_second = result["Tokens per Second"]
            ttft = result["Time to First Token (TTFT, seconds)"]
            formatted_responses = result["Formatted Responses"]
            yield time_taken, tokens_per_second, ttft, formatted_responses

# Load JSON data
with open("chats_sys_none.json", "r") as file:
    json_data = json.load(file)
json_data_str = json.dumps(json_data, indent=2)

# Show JSON function
def show_json():
    return json_data_str

# Gradio interface
app = gr.Blocks(css=".scrollable {height: 400px; overflow-y: auto; padding: 10px; border: 1px solid #ccc;}")

with app:
    with gr.Tab("LLM Inference Demo"):
        with gr.Row():
            with gr.Column():
                num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=1024, step=128, value=512)
                temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4)
                kv_bits = gr.Dropdown(label="KV Bits", choices=["1", "2", "4", "unquantized"], value="1")
                

            with gr.Column():
                time_taken = gr.Number(label="Time Taken (seconds)")
                tokens_per_second = gr.Number(label="Tokens per Second")
                ttft = gr.Number(label="Time to First Token (TTFT, seconds)")
        
        with gr.Row():  
            custom_questions_text = gr.Textbox(label="Custom Questions", placeholder="Type your custom questions here, one per line...", lines=5)

        with gr.Row():  
            demo_btn = gr.Button("Run Inference")

        with gr.Row():  
            formatted_responses = gr.Markdown(label="Formatted Responses")

        demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text, kv_bits], outputs=[time_taken, tokens_per_second, ttft, formatted_responses])

    with gr.Tab("Show JSON"):
        json_output = gr.HTML("<pre>{}</pre>".format(json_data_str))
        json_interface = gr.Interface(fn=show_json, inputs=[], outputs=[json_output], live=False)
        json_interface.render()

if __name__:
    print("Loading model and tokenizer on startup...")
    load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1")
    print("Model and tokenizer loaded. Starting Gradio interface...")
    app.queue(default_concurrency_limit=5).launch()