File size: 21,494 Bytes
71139a9
f3d3559
71139a9
 
 
 
 
 
 
 
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
f3d3559
71139a9
f3d3559
 
 
 
 
 
71139a9
 
 
 
f3d3559
71139a9
f3d3559
 
 
 
71139a9
f3d3559
 
71139a9
 
 
 
 
 
 
 
 
f3d3559
71139a9
 
f3d3559
71139a9
 
f3d3559
71139a9
 
f3d3559
 
 
71139a9
f3d3559
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
 
 
f3d3559
71139a9
 
f3d3559
 
 
 
 
 
 
 
71139a9
00f618e
 
f3d3559
 
 
00f618e
71139a9
 
 
 
f3d3559
 
 
71139a9
 
f3d3559
71139a9
 
 
 
 
f3d3559
 
 
71139a9
 
 
 
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
71139a9
 
f3d3559
 
 
 
 
 
 
 
71139a9
f3d3559
71139a9
 
 
 
f3d3559
71139a9
 
 
 
 
 
f3d3559
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
71139a9
 
 
f3d3559
 
 
71139a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d3559
 
71139a9
 
f3d3559
 
 
71139a9
 
 
 
 
 
 
 
 
 
 
 
 
 
f3d3559
71139a9
f3d3559
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
 
 
 
f3d3559
 
 
 
 
 
 
 
 
71139a9
 
f3d3559
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
71139a9
 
 
 
 
 
 
 
 
 
 
 
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
 
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
f3d3559
71139a9
 
f3d3559
 
 
 
71139a9
f3d3559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71139a9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import gradio
import gradio_image_annotation
import gradio_imageslider
import spaces
import torch

import src.SegmentAnything2Assist as SegmentAnything2Assist

example_image_annotation = {
    "image": "assets/cars.jpg",
    "boxes": [
        {
            "label": "+",
            "color": (0, 255, 0),
            "xmin": 886,
            "ymin": 551,
            "xmax": 886,
            "ymax": 551,
        },
        {
            "label": "-",
            "color": (255, 0, 0),
            "xmin": 1239,
            "ymin": 576,
            "xmax": 1239,
            "ymax": 576,
        },
        {
            "label": "-",
            "color": (255, 0, 0),
            "xmin": 610,
            "ymin": 574,
            "xmax": 610,
            "ymax": 574,
        },
        {
            "label": "",
            "color": (0, 0, 255),
            "xmin": 254,
            "ymin": 466,
            "xmax": 1347,
            "ymax": 1047,
        },
    ],
}


VERBOSE = True
DEBUG = False


segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
    model_name="sam2_hiera_tiny", device=torch.device("cpu")
)


def __change_base_model(model_name, device):
    global segment_anything2assist
    gradio.Info(f"Changing model to {model_name} on {device}", duration=3)
    try:
        segment_anything2assist = SegmentAnything2Assist.SegmentAnything2Assist(
            model_name=model_name, device=torch.device(device)
        )
        gradio.Info(f"Model has been changed to {model_name} on {device}", duration=5)
    except:
        gradio.Error(f"Model could not be changed", duration=5)


def __post_process_annotator_inputs(value):
    if VERBOSE:
        print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Called.")
    __current_mask, __current_segment = None, None
    new_boxes = []
    __image_point_coords = []
    __image_point_labels = []
    __image_box = []

    b_has_box = False
    for box in value["boxes"]:
        if box["label"] == "":
            if not b_has_box:
                new_box = box.copy()
                new_box["color"] = (0, 0, 255)
                new_boxes.append(new_box)
                b_has_box = True
            __image_box = [box["xmin"], box["ymin"], box["xmax"], box["ymax"]]

        elif box["label"] == "+" or box["label"] == "-":
            new_box = box.copy()
            new_box["color"] = (0, 255, 0) if box["label"] == "+" else (255, 0, 0)
            new_box["xmin"] = int((box["xmin"] + box["xmax"]) / 2)
            new_box["ymin"] = int((box["ymin"] + box["ymax"]) / 2)
            new_box["xmax"] = new_box["xmin"]
            new_box["ymax"] = new_box["ymin"]
            new_boxes.append(new_box)

            __image_point_coords.append([new_box["xmin"], new_box["ymin"]])
            __image_point_labels.append(1 if box["label"] == "+" else 0)

    if len(__image_box) == 0:
        __image_box = None

    if len(__image_point_coords) == 0:
        __image_point_coords = None

    if len(__image_point_labels) == 0:
        __image_point_labels = None

    if VERBOSE:
        print("SegmentAnything2AssistApp::____post_process_annotator_inputs::Done.")

    return __image_point_coords, __image_point_labels, __image_box


@spaces.GPU(duration=60)
def __generate_mask(
    value,
    mask_threshold,
    max_hole_area,
    max_sprinkle_area,
    image_output_mode,
):
    global segment_anything2assist

    # Force post processing of annotated image
    image_point_coords, image_point_labels, image_box = __post_process_annotator_inputs(
        value
    )

    if VERBOSE:
        print("SegmentAnything2AssistApp::__generate_mask::Called.")
    mask_chw, mask_iou = segment_anything2assist.generate_masks_from_image(
        value["image"],
        image_point_coords,
        image_point_labels,
        image_box,
        mask_threshold,
        max_hole_area,
        max_sprinkle_area,
    )

    if VERBOSE:
        print("SegmentAnything2AssistApp::__generate_mask::Masks generated.")

    __current_mask, __current_segment = segment_anything2assist.apply_mask_to_image(
        value["image"], mask_chw[0]
    )

    if VERBOSE:
        print("SegmentAnything2AssistApp::__generate_mask::Masks and Segments created.")

    __image_box = gradio.DataFrame(value=[[]])
    __image_point_coords = gradio.DataFrame(value=[[]])
    if DEBUG:
        __image_box = gradio.DataFrame(
            value=[image_box],
            label="Box",
            interactive=False,
            headers=["XMin", "YMin", "XMax", "YMax"],
        )
        x = []
        for i, _ in enumerate(image_point_coords):
            x.append(
                [
                    image_point_labels[i],
                    image_point_coords[i][0],
                    image_point_coords[i][1],
                ]
            )
        __image_point_coords = gradio.DataFrame(
            value=x,
            label="Point Coords",
            interactive=False,
            headers=["Label", "X", "Y"],
        )

    if image_output_mode == "Mask":
        return (
            [value["image"], __current_mask],
            __image_point_coords,
            __image_box,
            __current_mask,
            __current_segment,
        )
    elif image_output_mode == "Segment":
        return (
            [value["image"], __current_segment],
            __image_point_coords,
            __image_box,
            __current_mask,
            __current_segment,
        )
    else:
        gradio.Warning("This is an issue, please report the problem!", duration=5)
        return (
            gradio_imageslider.ImageSlider(render=True),
            __image_point_coords,
            __image_box,
            __current_mask,
            __current_segment,
        )


def __change_output_mode(image_input, radio, __current_mask, __current_segment):
    if VERBOSE:
        print("SegmentAnything2AssistApp::__generate_mask::Called.")
    if __current_mask is None or __current_segment is None:
        gradio.Warning("Configuration was changed, generate the mask again", duration=5)
        return gradio_imageslider.ImageSlider(render=True)
    if radio == "Mask":
        return [image_input["image"], __current_mask]
    elif radio == "Segment":
        return [image_input["image"], __current_segment]
    else:
        gradio.Warning("This is an issue, please report the problem!", duration=5)
        return gradio_imageslider.ImageSlider(render=True)


def __generate_multi_mask_output(
    image, auto_list, auto_mode, auto_bbox_mode, masks, bboxes
):
    global segment_anything2assist

    # When value from gallery is called, it is a tuple
    if type(masks[0]) == tuple:
        masks = [mask[0] for mask in masks]

    image_with_bbox, mask, segment = segment_anything2assist.apply_auto_mask_to_image(
        image, [int(i) - 1 for i in auto_list], masks, bboxes
    )

    output_1 = image_with_bbox if auto_bbox_mode else image
    output_2 = mask if auto_mode == "Mask" else segment
    return [output_1, output_2]


@spaces.GPU(duration=60)
def __generate_auto_mask(
    image,
    points_per_side,
    points_per_batch,
    pred_iou_thresh,
    stability_score_thresh,
    stability_score_offset,
    mask_threshold,
    box_nms_thresh,
    crop_n_layers,
    crop_nms_thresh,
    crop_overlay_ratio,
    crop_n_points_downscale_factor,
    min_mask_region_area,
    use_m2m,
    multimask_output,
    output_mode,
):
    global segment_anything2assist
    if VERBOSE:
        print("SegmentAnything2AssistApp::__generate_auto_mask::Called.")

    __auto_masks, masks, bboxes = segment_anything2assist.generate_automatic_masks(
        image,
        points_per_side,
        points_per_batch,
        pred_iou_thresh,
        stability_score_thresh,
        stability_score_offset,
        mask_threshold,
        box_nms_thresh,
        crop_n_layers,
        crop_nms_thresh,
        crop_overlay_ratio,
        crop_n_points_downscale_factor,
        min_mask_region_area,
        use_m2m,
        multimask_output,
    )

    if len(__auto_masks) == 0:
        gradio.Warning(
            "No masks generated, please tweak the advanced parameters.", duration=5
        )
        return (
            gradio_imageslider.ImageSlider(),
            gradio.CheckboxGroup([], value=[], label="Mask List", interactive=False),
            gradio.Checkbox(value=False, label="Show Bounding Box", interactive=False),
            gradio.Gallery(
                None, label="Output Gallery", interactive=False, type="numpy"
            ),
            gradio.DataFrame(
                value=[[]],
                label="Box",
                interactive=False,
                headers=["XMin", "YMin", "XMax", "YMax"],
            ),
        )
    else:
        choices = [str(i) for i in range(len(__auto_masks))]

        returning_image = __generate_multi_mask_output(
            image, ["0"], output_mode, False, masks, bboxes
        )
        return (
            returning_image,
            gradio.CheckboxGroup(
                choices, value=["0"], label="Mask List", interactive=True
            ),
            gradio.Checkbox(value=False, label="Show Bounding Box", interactive=True),
            gradio.Gallery(
                masks, label="Output Gallery", interactive=True, type="numpy"
            ),
            gradio.DataFrame(
                value=bboxes,
                label="Box",
                interactive=False,
                headers=["XMin", "YMin", "XMax", "YMax"],
                type="array",
            ),
        )


with gradio.Blocks() as base_app:
    gradio.Markdown("# SegmentAnything2Assist")
    with gradio.Row():
        with gradio.Column():
            base_model_choice = gradio.Dropdown(
                [
                    "sam2_hiera_large",
                    "sam2_hiera_small",
                    "sam2_hiera_base_plus",
                    "sam2_hiera_tiny",
                ],
                value="sam2_hiera_tiny",
                label="Model Choice",
            )
        with gradio.Column():
            base_gpu_choice = gradio.Dropdown(
                ["cpu", "cuda"], value="cuda", label="Device Choice"
            )
    base_model_choice.change(
        __change_base_model, inputs=[base_model_choice, base_gpu_choice]
    )
    base_gpu_choice.change(
        __change_base_model, inputs=[base_model_choice, base_gpu_choice]
    )

    # Image Segmentation
    with gradio.Tab(label="Image Segmentation", id="image_tab") as image_tab:
        gradio.Markdown("Image Segmentation", render=True)
        with gradio.Column():
            with gradio.Accordion("Image Annotation Documentation", open=False):
                gradio.Markdown(
                    """
                    Image annotation allows you to mark specific regions of an image with labels. 
                    In this app, you can annotate an image by drawing boxes and assigning labels to them. 
                    The labels can be either '+' or '-'. 
                    To annotate an image, simply click and drag to draw a box around the desired region. 
                    You can add multiple boxes with different labels. 
                    Once you have annotated the image, click the 'Generate Mask' button to generate a mask based on the annotations. 
                    The mask can be either a binary mask or a segmented mask, depending on the selected output mode. 
                    You can switch between the output modes using the radio buttons. 
                    If you make any changes to the annotations or the output mode, you need to regenerate the mask by clicking the button again. 
                    Note that the advanced options allow you to adjust the SAM mask threshold, maximum hole area, and maximum sprinkle area. 
                    These options control the sensitivity and accuracy of the segmentation process. 
                    Experiment with different settings to achieve the desired results. 
                """
                )
            image_input = gradio_image_annotation.image_annotator(
                example_image_annotation
            )
            with gradio.Accordion("Advanced Options", open=False):
                image_generate_SAM_mask_threshold = gradio.Slider(
                    0.0, 1.0, 0.0, label="SAM Mask Threshold"
                )
                image_generate_SAM_max_hole_area = gradio.Slider(
                    0, 1000, 0, label="SAM Max Hole Area"
                )
                image_generate_SAM_max_sprinkle_area = gradio.Slider(
                    0, 1000, 0, label="SAM Max Sprinkle Area"
                )
            image_generate_mask_button = gradio.Button("Generate Mask")
            with gradio.Row():
                with gradio.Column():
                    image_output_mode = gradio.Radio(
                        ["Segment", "Mask"], value="Segment", label="Output Mode"
                    )
                with gradio.Column(scale=3):
                    image_output = gradio_imageslider.ImageSlider()

            with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
                __image_point_coords = gradio.DataFrame(
                    value=[["+", 886, 551], ["-", 1239, 576]],
                    label="Point Coords",
                    interactive=False,
                    headers=["Label", "X", "Y"],
                )
                __image_box = gradio.DataFrame(
                    value=[[254, 466, 1347, 1047]],
                    label="Box",
                    interactive=False,
                    headers=["XMin", "YMin", "XMax", "YMax"],
                )
                __current_mask = gradio.Image(label="Current Mask", interactive=False)
                __current_segment = gradio.Image(
                    label="Current Segment", interactive=False
                )

            # image_input.change(__post_process_annotator_inputs, inputs = [image_input])
            image_generate_mask_button.click(
                __generate_mask,
                inputs=[
                    image_input,
                    image_generate_SAM_mask_threshold,
                    image_generate_SAM_max_hole_area,
                    image_generate_SAM_max_sprinkle_area,
                    image_output_mode,
                ],
                outputs=[
                    image_output,
                    __image_point_coords,
                    __image_box,
                    __current_mask,
                    __current_segment,
                ],
            )
            image_output_mode.change(
                __change_output_mode,
                inputs=[
                    image_input,
                    image_output_mode,
                    __current_mask,
                    __current_segment,
                ],
                outputs=[image_output],
            )

    # Auto Segmentation
    with gradio.Tab(label="Auto Segmentation", id="auto_tab"):
        gradio.Markdown("Auto Segmentation", render=True)
        with gradio.Column():
            with gradio.Accordion("Auto Annotation Documentation", open=False):
                gradio.Markdown(
                    """
                """
                )
            auto_input = gradio.Image("assets/cars.jpg")
            with gradio.Accordion("Advanced Options", open=False):
                auto_generate_SAM_points_per_side = gradio.Slider(
                    1, 64, 12, 1, label="Points Per Side", interactive=True
                )
                auto_generate_SAM_points_per_batch = gradio.Slider(
                    1, 64, 32, 1, label="Points Per Batch", interactive=True
                )
                auto_generate_SAM_pred_iou_thresh = gradio.Slider(
                    0.0, 1.0, 0.8, 1, label="Pred IOU Threshold", interactive=True
                )
                auto_generate_SAM_stability_score_thresh = gradio.Slider(
                    0.0, 1.0, 0.95, label="Stability Score Threshold", interactive=True
                )
                auto_generate_SAM_stability_score_offset = gradio.Slider(
                    0.0, 1.0, 1.0, label="Stability Score Offset", interactive=True
                )
                auto_generate_SAM_mask_threshold = gradio.Slider(
                    0.0, 1.0, 0.0, label="Mask Threshold", interactive=True
                )
                auto_generate_SAM_box_nms_thresh = gradio.Slider(
                    0.0, 1.0, 0.7, label="Box NMS Threshold", interactive=True
                )
                auto_generate_SAM_crop_n_layers = gradio.Slider(
                    0, 10, 0, 1, label="Crop N Layers", interactive=True
                )
                auto_generate_SAM_crop_nms_thresh = gradio.Slider(
                    0.0, 1.0, 0.7, label="Crop NMS Threshold", interactive=True
                )
                auto_generate_SAM_crop_overlay_ratio = gradio.Slider(
                    0.0, 1.0, 512 / 1500, label="Crop Overlay Ratio", interactive=True
                )
                auto_generate_SAM_crop_n_points_downscale_factor = gradio.Slider(
                    1, 10, 1, label="Crop N Points Downscale Factor", interactive=True
                )
                auto_generate_SAM_min_mask_region_area = gradio.Slider(
                    0, 1000, 0, label="Min Mask Region Area", interactive=True
                )
                auto_generate_SAM_use_m2m = gradio.Checkbox(
                    label="Use M2M", interactive=True
                )
                auto_generate_SAM_multimask_output = gradio.Checkbox(
                    value=True, label="Multi Mask Output", interactive=True
                )
            auto_generate_button = gradio.Button("Generate Auto Mask")
            with gradio.Row():
                with gradio.Column():
                    auto_output_mode = gradio.Radio(
                        ["Segment", "Mask"],
                        value="Segment",
                        label="Output Mode",
                        interactive=True,
                    )
                    auto_output_list = gradio.CheckboxGroup(
                        [], value=[], label="Mask List", interactive=False
                    )
                    auto_output_bbox = gradio.Checkbox(
                        value=False, label="Show Bounding Box", interactive=False
                    )
                with gradio.Column(scale=3):
                    auto_output = gradio_imageslider.ImageSlider()
            with gradio.Accordion("Debug", open=DEBUG, visible=DEBUG):
                __auto_output_gallery = gradio.Gallery(
                    None, label="Output Gallery", interactive=False, type="numpy"
                )
                __auto_bbox = gradio.DataFrame(
                    value=[[]],
                    label="Box",
                    interactive=False,
                    headers=["XMin", "YMin", "XMax", "YMax"],
                )

            auto_generate_button.click(
                __generate_auto_mask,
                inputs=[
                    auto_input,
                    auto_generate_SAM_points_per_side,
                    auto_generate_SAM_points_per_batch,
                    auto_generate_SAM_pred_iou_thresh,
                    auto_generate_SAM_stability_score_thresh,
                    auto_generate_SAM_stability_score_offset,
                    auto_generate_SAM_mask_threshold,
                    auto_generate_SAM_box_nms_thresh,
                    auto_generate_SAM_crop_n_layers,
                    auto_generate_SAM_crop_nms_thresh,
                    auto_generate_SAM_crop_overlay_ratio,
                    auto_generate_SAM_crop_n_points_downscale_factor,
                    auto_generate_SAM_min_mask_region_area,
                    auto_generate_SAM_use_m2m,
                    auto_generate_SAM_multimask_output,
                    auto_output_mode,
                ],
                outputs=[
                    auto_output,
                    auto_output_list,
                    auto_output_bbox,
                    __auto_output_gallery,
                    __auto_bbox,
                ],
            )
            auto_output_list.change(
                __generate_multi_mask_output,
                inputs=[
                    auto_input,
                    auto_output_list,
                    auto_output_mode,
                    auto_output_bbox,
                    __auto_output_gallery,
                    __auto_bbox,
                ],
                outputs=[auto_output],
            )
            auto_output_bbox.change(
                __generate_multi_mask_output,
                inputs=[
                    auto_input,
                    auto_output_list,
                    auto_output_mode,
                    auto_output_bbox,
                    __auto_output_gallery,
                    __auto_bbox,
                ],
                outputs=[auto_output],
            )
            auto_output_mode.change(
                __generate_multi_mask_output,
                inputs=[
                    auto_input,
                    auto_output_list,
                    auto_output_mode,
                    auto_output_bbox,
                    __auto_output_gallery,
                    __auto_bbox,
                ],
                outputs=[auto_output],
            )


if __name__ == "__main__":
    base_app.launch()