File size: 15,935 Bytes
5446331 76e2397 5446331 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import huggingface_hub
import re
class LlamaManager():
def __init__(self, llama_token = None, verbose = False):
self.verbose = verbose
if self.verbose:
print("LlamaManager::__init__::Initializing LlamaManager")
self.client = huggingface_hub.InferenceClient(
"meta-llama/Meta-Llama-3.1-70B-Instruct",
token=llama_token,
)
if self.verbose:
print("LlamaManager::__init__::Initialized LlamaManager")
def __get_items_between_tags(self, input_string, tag1, tag2):
pattern = r'' + tag1 + '(.*?)' + tag2 + ''
return re.findall(pattern, input_string, re.DOTALL)
def __preprocss_for_auto_generate_questions_categories(self, available_categories):
if self.verbose:
print("LlamaManager::__preprocss_for_auto_generate_questions_categories::Preprocessing")
out = ""
for available_category in available_categories:
out += f"[A]{available_category}[/A]"
return out
def __postprocess_for_auto_generate_questions_categories(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::No categories found")
return []
return out
def auto_generate_questions_categories(
self,
count = 20,
available_categories = ["Variables"],
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
available_content_for_assistant = self.__preprocss_for_auto_generate_questions_categories(available_categories)
if self.verbose:
print("LlamaManager::auto_generate_questions_categories::Generating questions categories")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} basic topics for python programming"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
categories = self.__postprocess_for_auto_generate_questions_categories(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_questions_categories::Generated questions Categories")
return categories
def __postprocess_for_auto_generate_shots_for_category(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::No questions found")
return []
return out
def auto_generate_shots_for_category(
self,
count,
category,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_shots_for_category::Generating shots for category")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me 2 programming questions on the topic of For Loop in Python. The question should be of medium and hard difficulty. The question should involve use of just one function"},
{"role": "assistant", "content": f"""[L]
- [A]Write a program that takes a positive integer as input and computes the sum of its digits using a for loop.[/A]
- [A]Write a program that generates a spiral matrix of size NxN, where N is always an odd number. Fill the spiral matrix with consecutive prime numbers in a clockwise spiral pattern, starting from the center of the matrix.[/A]
"""},
{"role": "user", "content": f"Write me {count} programming questions on the topic of {category} in Python. The question should be of medium and hard difficulty. The question should involve use of just one function"},
{"role": "assistant", "content": f"[L]"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
shots = self.__postprocess_for_auto_generate_shots_for_category(out.choices[0].message.content + "[/L]")
if self.verbose:
print(f"LlamaManager::auto_generate_shots_for_category::Generated {count} shots for {category}")
return shots
def __preprocess_for_auto_generate_questions_from_shots(self, shots):
if self.verbose:
print("LlamaManager::__preprocess_for_auto_generate_questions_from_shots::Preprocessing")
out = ""
for shot in shots:
out += f"[A]{shot}[/A]"
return out
def __postprocess_for_auto_generate_questions_from_shots(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::No questions found")
return []
return out
def auto_generate_questions_from_shots(
self,
count,
category,
shots,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
available_content_for_assistant = self.__preprocess_for_auto_generate_questions_from_shots(shots)
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generating questions from shots")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} python programming questions which uses {category.lower()}"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
previous_iteration_questions_count = []
questions = []
token_count = 1000
while len(questions) < count:
out = self.client.chat_completion(
messages = message_content,
max_tokens = token_count,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
questions = self.__postprocess_for_auto_generate_questions_from_shots(out.choices[0].message.content + "[/L]")
available_content_for_assistant = self.__preprocess_for_auto_generate_questions_from_shots(questions)
previous_iteration_questions_count.append(len(questions))
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} python programming questions which uses {category.lower()}"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
token_count += 500
if len(previous_iteration_questions_count) > 3:
if previous_iteration_questions_count[-1] == previous_iteration_questions_count[-2] == previous_iteration_questions_count[-3] == previous_iteration_questions_count[-4]:
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generation could not be completed, stopping API calls")
break
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generated questions from shots")
return questions
def __postprocess_for_auto_generate_function_signature_from_question(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_function_signature_from_question::Postprocessing")
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")[0]
function_name = self.__get_items_between_tags(out, r"\[F\]", r"\[/F\]")[0]
input_parameters = self.__get_items_between_tags(out, r"\[I\]", r"\[/I\]")
return_type = self.__get_items_between_tags(out, r"\[R\]", r"\[/R\]")[0]
return function_name, input_parameters, return_type
def auto_generate_function_signature_from_question(
self,
question,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_function_signature_from_question::Generating function signature from question")
message_content = [
{"role": "system", "content": """You are a synthetic data generator.
You must answer the question between [A] and [/A] tags.
The answer should include a function name, input parameters and return type.
The function name should be between [F] and [/F] tags.
Each input parameter should be between [I] and [/I] tags.
The return type should be between [R] and [/R] tags.
"""},
{"role": "user", "content": f"""Write me a function signature, input parameters and return type for the following question:
Write a program that takes two positive integers as input and computes the sum of their digits using a for loop."""},
{"role": "assistant", "content": f"[A][F]sum_of_digits[/F][I]num_1: int[/I][I]num_2: int[/I][R]int[/R][/A]"},
{"role": "user", "content": f"Write me a function signature, input parameters and return type for the following question: {question}"},
{"role": "assistant", "content": f"[A]"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
function_name, input_parameters, return_type = self.__postprocess_for_auto_generate_function_signature_from_question(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_function_signature_from_question::Generated function signature from question")
return function_name, input_parameters, return_type
def __postprocess_for_auto_generate_answers_and_tests(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_answers_and_tests::Postprocessing")
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")[0]
answer = self.__get_items_between_tags(out, r"\[F\]", r"\[/F\]")[0]
test_cases = self.__get_items_between_tags(out, r"\[T\]", r"\[/T\]")
return answer, test_cases
def auto_generate_answers_and_tests(
self,
question,
function_name,
input_parameters,
return_type,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_answers_and_tests::Generating answers and test cases")
function_signature = f"{function_name}({', '.join(input_parameters)}) -> {return_type}"
message_content = [
{"role": "system", "content": """You are a synthetic data generator.
Your must answer the question between [A] and [/A] tags.
The answer should include a function implementation and test cases.
The function implementation should be between [F] and [/F] tags.
Each test cases should be between [T] and [/T] tags.
Test cases must use assert statements.
Do not comment on the code. No need to explain the solution.
"""},
{"role": "user", "content": f"""Write me a function implementation along with the test cases for the following question: {question},
The function has the following signature: {function_signature}"""}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
answer, test_cases = self.__postprocess_for_auto_generate_answers_and_tests(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_answers_and_tests::Generated answers and test cases")
return answer, test_cases
if __name__ == "__main__":
llama_manager = LlamaManager("nope", True)
categories = llama_manager.auto_generate_questions_categories(20)
shots = llama_manager.auto_generate_shots_for_category(2, categories[3])
questions = llama_manager.auto_generate_questions_from_shots(10, categories[3], shots, temperature = 0.5) |