xqt's picture
UPD: added a function and code generation module
76e2397
raw
history blame
15.9 kB
import huggingface_hub
import re
class LlamaManager():
def __init__(self, llama_token = None, verbose = False):
self.verbose = verbose
if self.verbose:
print("LlamaManager::__init__::Initializing LlamaManager")
self.client = huggingface_hub.InferenceClient(
"meta-llama/Meta-Llama-3.1-70B-Instruct",
token=llama_token,
)
if self.verbose:
print("LlamaManager::__init__::Initialized LlamaManager")
def __get_items_between_tags(self, input_string, tag1, tag2):
pattern = r'' + tag1 + '(.*?)' + tag2 + ''
return re.findall(pattern, input_string, re.DOTALL)
def __preprocss_for_auto_generate_questions_categories(self, available_categories):
if self.verbose:
print("LlamaManager::__preprocss_for_auto_generate_questions_categories::Preprocessing")
out = ""
for available_category in available_categories:
out += f"[A]{available_category}[/A]"
return out
def __postprocess_for_auto_generate_questions_categories(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_categories::No categories found")
return []
return out
def auto_generate_questions_categories(
self,
count = 20,
available_categories = ["Variables"],
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
available_content_for_assistant = self.__preprocss_for_auto_generate_questions_categories(available_categories)
if self.verbose:
print("LlamaManager::auto_generate_questions_categories::Generating questions categories")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} basic topics for python programming"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
categories = self.__postprocess_for_auto_generate_questions_categories(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_questions_categories::Generated questions Categories")
return categories
def __postprocess_for_auto_generate_shots_for_category(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_shots_for_category::No questions found")
return []
return out
def auto_generate_shots_for_category(
self,
count,
category,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_shots_for_category::Generating shots for category")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me 2 programming questions on the topic of For Loop in Python. The question should be of medium and hard difficulty. The question should involve use of just one function"},
{"role": "assistant", "content": f"""[L]
- [A]Write a program that takes a positive integer as input and computes the sum of its digits using a for loop.[/A]
- [A]Write a program that generates a spiral matrix of size NxN, where N is always an odd number. Fill the spiral matrix with consecutive prime numbers in a clockwise spiral pattern, starting from the center of the matrix.[/A]
"""},
{"role": "user", "content": f"Write me {count} programming questions on the topic of {category} in Python. The question should be of medium and hard difficulty. The question should involve use of just one function"},
{"role": "assistant", "content": f"[L]"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
shots = self.__postprocess_for_auto_generate_shots_for_category(out.choices[0].message.content + "[/L]")
if self.verbose:
print(f"LlamaManager::auto_generate_shots_for_category::Generated {count} shots for {category}")
return shots
def __preprocess_for_auto_generate_questions_from_shots(self, shots):
if self.verbose:
print("LlamaManager::__preprocess_for_auto_generate_questions_from_shots::Preprocessing")
out = ""
for shot in shots:
out += f"[A]{shot}[/A]"
return out
def __postprocess_for_auto_generate_questions_from_shots(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::Postprocessing")
out = self.__get_items_between_tags(out, r"\[L\]", r"\[/L\]")[0]
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::No content found")
return []
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")
if not out:
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_questions_from_shots::No questions found")
return []
return out
def auto_generate_questions_from_shots(
self,
count,
category,
shots,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
available_content_for_assistant = self.__preprocess_for_auto_generate_questions_from_shots(shots)
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generating questions from shots")
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} python programming questions which uses {category.lower()}"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
previous_iteration_questions_count = []
questions = []
token_count = 1000
while len(questions) < count:
out = self.client.chat_completion(
messages = message_content,
max_tokens = token_count,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
questions = self.__postprocess_for_auto_generate_questions_from_shots(out.choices[0].message.content + "[/L]")
available_content_for_assistant = self.__preprocess_for_auto_generate_questions_from_shots(questions)
previous_iteration_questions_count.append(len(questions))
message_content = [
{"role": "system", "content": "You are a synthetic data generator. You must only answer questions as a list. Each item of the list should be enclosed in [A] and [/A] tags. The list should be enclosed in [L] and [/L] tags."},
{"role": "user", "content": f"Write me {count} python programming questions which uses {category.lower()}"},
{"role": "assistant", "content": f"[L]{available_content_for_assistant}"}
]
token_count += 500
if len(previous_iteration_questions_count) > 3:
if previous_iteration_questions_count[-1] == previous_iteration_questions_count[-2] == previous_iteration_questions_count[-3] == previous_iteration_questions_count[-4]:
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generation could not be completed, stopping API calls")
break
if self.verbose:
print("LlamaManager::auto_generate_questions_from_shots::Generated questions from shots")
return questions
def __postprocess_for_auto_generate_function_signature_from_question(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_function_signature_from_question::Postprocessing")
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")[0]
function_name = self.__get_items_between_tags(out, r"\[F\]", r"\[/F\]")[0]
input_parameters = self.__get_items_between_tags(out, r"\[I\]", r"\[/I\]")
return_type = self.__get_items_between_tags(out, r"\[R\]", r"\[/R\]")[0]
return function_name, input_parameters, return_type
def auto_generate_function_signature_from_question(
self,
question,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_function_signature_from_question::Generating function signature from question")
message_content = [
{"role": "system", "content": """You are a synthetic data generator.
You must answer the question between [A] and [/A] tags.
The answer should include a function name, input parameters and return type.
The function name should be between [F] and [/F] tags.
Each input parameter should be between [I] and [/I] tags.
The return type should be between [R] and [/R] tags.
"""},
{"role": "user", "content": f"""Write me a function signature, input parameters and return type for the following question:
Write a program that takes two positive integers as input and computes the sum of their digits using a for loop."""},
{"role": "assistant", "content": f"[A][F]sum_of_digits[/F][I]num_1: int[/I][I]num_2: int[/I][R]int[/R][/A]"},
{"role": "user", "content": f"Write me a function signature, input parameters and return type for the following question: {question}"},
{"role": "assistant", "content": f"[A]"}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
function_name, input_parameters, return_type = self.__postprocess_for_auto_generate_function_signature_from_question(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_function_signature_from_question::Generated function signature from question")
return function_name, input_parameters, return_type
def __postprocess_for_auto_generate_answers_and_tests(self, out):
if self.verbose:
print("LlamaManager::__postprocess_for_auto_generate_answers_and_tests::Postprocessing")
out = self.__get_items_between_tags(out, r"\[A\]", r"\[/A\]")[0]
answer = self.__get_items_between_tags(out, r"\[F\]", r"\[/F\]")[0]
test_cases = self.__get_items_between_tags(out, r"\[T\]", r"\[/T\]")
return answer, test_cases
def auto_generate_answers_and_tests(
self,
question,
function_name,
input_parameters,
return_type,
seed = 123,
temperature = 1.0,
top_p = 0.9,
frequency_penalty = 0.0
):
if self.verbose:
print("LlamaManager::auto_generate_answers_and_tests::Generating answers and test cases")
function_signature = f"{function_name}({', '.join(input_parameters)}) -> {return_type}"
message_content = [
{"role": "system", "content": """You are a synthetic data generator.
Your must answer the question between [A] and [/A] tags.
The answer should include a function implementation and test cases.
The function implementation should be between [F] and [/F] tags.
Each test cases should be between [T] and [/T] tags.
Test cases must use assert statements.
Do not comment on the code. No need to explain the solution.
"""},
{"role": "user", "content": f"""Write me a function implementation along with the test cases for the following question: {question},
The function has the following signature: {function_signature}"""}
]
out = self.client.chat_completion(
messages = message_content,
max_tokens = 1000,
stream = False,
seed = seed,
temperature = temperature,
top_p = top_p,
frequency_penalty = frequency_penalty
)
answer, test_cases = self.__postprocess_for_auto_generate_answers_and_tests(out.choices[0].message.content)
if self.verbose:
print("LlamaManager::auto_generate_answers_and_tests::Generated answers and test cases")
return answer, test_cases
if __name__ == "__main__":
llama_manager = LlamaManager("nope", True)
categories = llama_manager.auto_generate_questions_categories(20)
shots = llama_manager.auto_generate_shots_for_category(2, categories[3])
questions = llama_manager.auto_generate_questions_from_shots(10, categories[3], shots, temperature = 0.5)