File size: 42,348 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
"""Contains all of the events that can be triggered in a gr.Blocks() app, with the exception
of the on-page-load event, which is defined in gr.Blocks().load()."""

from __future__ import annotations

import dataclasses
from collections.abc import Callable, Sequence, Set
from functools import partial, wraps
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    Union,
    cast,
)

from gradio_client.documentation import document
from jinja2 import Template

from gradio.data_classes import FileData, FileDataDict

if TYPE_CHECKING:
    from gradio.blocks import Block, BlockContext, Component
    from gradio.components import Timer

from gradio.context import get_blocks_context
from gradio.utils import get_cancelled_fn_indices


def set_cancel_events(
    triggers: Sequence[EventListenerMethod],
    cancels: None | dict[str, Any] | list[dict[str, Any]],
):
    if not cancels:
        return

    root_block = get_blocks_context()
    if root_block is None:
        raise AttributeError("Cannot cancel outside of a gradio.Blocks context.")

    if not isinstance(cancels, list):
        cancels = [cancels]

    regular_cancels: list[dict[str, Any]] = []
    timers_to_cancel: list[Component] = []
    for cancel in cancels:
        associated_timer = getattr(cancel, "associated_timer", None)
        if associated_timer:
            timers_to_cancel.append(associated_timer)
        else:
            regular_cancels.append(cancel)

    if timers_to_cancel:
        from gradio.components import Timer

        root_block.set_event_trigger(
            triggers,
            fn=lambda: (
                [Timer(active=False) for _ in timers_to_cancel]
                if len(timers_to_cancel) > 1
                else Timer(active=False)
            ),
            inputs=None,
            outputs=timers_to_cancel,
            show_api=False,
        )

    if regular_cancels:
        fn_indices_to_cancel = get_cancelled_fn_indices(regular_cancels)
        root_block.set_event_trigger(
            triggers,
            fn=None,
            inputs=None,
            outputs=None,
            queue=False,
            preprocess=False,
            show_api=False,
            cancels=fn_indices_to_cancel,
            is_cancel_function=True,
        )


@document()
class Dependency(dict):
    def __init__(
        self, trigger, key_vals, dep_index, fn, associated_timer: Timer | None = None
    ):
        """
        The Dependency object is usualy not created directly but is returned when an event listener is set up. It contains the configuration
        data for the event listener, and can be used to set up additional event listeners that depend on the completion of the current event
        listener using .then() and .success().

        Demos: chatbot_consecutive, blocks_chained_events
        """

        super().__init__(key_vals)
        self.fn = fn
        self.associated_timer = associated_timer
        self.then = partial(
            EventListener(
                "then",
                trigger_after=dep_index,
                trigger_only_on_success=False,
                has_trigger=False,
            ).listener,
            trigger,
        )
        """
        Triggered after directly preceding event is completed, regardless of success or failure.
        """
        self.success = partial(
            EventListener(
                "success",
                trigger_after=dep_index,
                trigger_only_on_success=True,
                has_trigger=False,
            ).listener,
            trigger,
        )
        """
        Triggered after directly preceding event is completed, if it was successful.
        """

    def __call__(self, *args, **kwargs):
        return self.fn(*args, **kwargs)


@document()
class EventData:
    """
    When gr.EventData or one of its subclasses is added as a type hint to an argument of a prediction function, a gr.EventData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener. The gr.EventData object itself contains a `.target` attribute that refers to the component
    that triggered the event, while subclasses of gr.EventData contains additional attributes that are different for each class.

    Example:
        import gradio as gr
        with gr.Blocks() as demo:
            table = gr.Dataframe([[1, 2, 3], [4, 5, 6]])
            gallery = gr.Gallery([("cat.jpg", "Cat"), ("dog.jpg", "Dog")])
            textbox = gr.Textbox("Hello World!")
            statement = gr.Textbox()
            def on_select(value, evt: gr.EventData):
                return f"The {evt.target} component was selected, and its value was {value}."
            table.select(on_select, table, statement)
            gallery.select(on_select, gallery, statement)
            textbox.select(on_select, textbox, statement)
        demo.launch()
    Demos: gallery_selections, tictactoe
    """

    def __init__(self, target: Block | None, _data: Any):
        """
        Parameters:
            target: The component object that triggered the event. Can be used to distinguish multiple components bound to the same listener.
        """
        self.target = target
        self._data = _data


@document()
class SelectData(EventData):
    """
    The gr.SelectData class is a subclass of gr.EventData that specifically carries information about the `.select()` event. When gr.SelectData
    is added as a type hint to an argument of an event listener method, a gr.SelectData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.

    Example:
        import gradio as gr
        with gr.Blocks() as demo:
            table = gr.Dataframe([[1, 2, 3], [4, 5, 6]])
            gallery = gr.Gallery([("cat.jpg", "Cat"), ("dog.jpg", "Dog")])
            textbox = gr.Textbox("Hello World!")
            statement = gr.Textbox()
            def on_select(evt: gr.SelectData):
                return f"You selected {evt.value} at {evt.index} from {evt.target}"
            table.select(on_select, table, statement)
            gallery.select(on_select, gallery, statement)
            textbox.select(on_select, textbox, statement)
        demo.launch()
    Demos: gallery_selections, tictactoe
    """

    def __init__(self, target: Block | None, data: Any):
        super().__init__(target, data)
        self.index: Any = data["index"]
        """
        The index of the selected item. Is a tuple if the component is two dimensional or selection is a range.
        """
        self.value: Any = data["value"]
        """
        The value of the selected item.
        """
        self.row_value: Any = data.get("row_value")
        """
        The value of the entire row that the selected item belongs to, as a 1-D list. Only implemented for the `Dataframe` component, returns None for other components.
        """
        self.col_value: Any = data.get("col_value")
        """
        The value of the entire row that the selected item belongs to, as a 1-D list. Only implemented for the `Dataframe` component, returns None for other components.
        """
        self.selected: bool = data.get("selected", True)
        """
        True if the item was selected, False if deselected.
        """


@document()
class KeyUpData(EventData):
    """
    The gr.KeyUpData class is a subclass of gr.EventData that specifically carries information about the `.key_up()` event. When gr.KeyUpData
    is added as a type hint to an argument of an event listener method, a gr.KeyUpData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.

    Example:
        import gradio as gr
        def test(value, key_up_data: gr.KeyUpData):
            return {
                "component value": value,
                "input value": key_up_data.input_value,
                "key": key_up_data.key
            }
        with gr.Blocks() as demo:
            d = gr.Dropdown(["abc", "def"], allow_custom_value=True)
            t = gr.JSON()
            d.key_up(test, d, t)
        demo.launch()
    Demos: dropdown_key_up
    """

    def __init__(self, target: Block | None, data: Any):
        super().__init__(target, data)
        self.key: str = data["key"]
        """
        The key that was pressed.
        """
        self.input_value: str = data["input_value"]
        """
        The displayed value in the input textbox after the key was pressed. This may be different than the `value`
        attribute of the component itself, as the `value` attribute of some components (e.g. Dropdown) are not updated
        until the user presses Enter.
        """


@document()
class DeletedFileData(EventData):
    """
    The gr.DeletedFileData class is a subclass of gr.EventData that specifically carries information about the `.delete()` event. When gr.DeletedFileData
    is added as a type hint to an argument of an event listener method, a gr.DeletedFileData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.
    Example:
        import gradio as gr
        def test(delete_data: gr.DeletedFileData):
            return delete_data.file.path
        with gr.Blocks() as demo:
            files = gr.File(file_count="multiple")
            deleted_file = gr.File()
            files.delete(test, None, deleted_file)
        demo.launch()
    Demos: file_component_events
    """

    def __init__(self, target: Block | None, data: FileDataDict):
        super().__init__(target, data)
        self.file: FileData = FileData(**data)
        """
        The file that was deleted, as a FileData object.
        """


@document()
class LikeData(EventData):
    """
    The gr.LikeData class is a subclass of gr.EventData that specifically carries information about the `.like()` event. When gr.LikeData
    is added as a type hint to an argument of an event listener method, a gr.LikeData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.
    Example:
        import gradio as gr
        def test(value, like_data: gr.LikeData):
            return {
                "chatbot_value": value,
                "liked_message": like_data.value,
                "liked_index": like_data.index,
                "liked_or_disliked_as_bool": like_data.liked
            }
        with gr.Blocks() as demo:
            c = gr.Chatbot([("abc", "def")])
            t = gr.JSON()
            c.like(test, c, t)
        demo.launch()
    Demos: chatbot_core_components_simple
    """

    def __init__(self, target: Block | None, data: Any):
        super().__init__(target, data)
        self.index: int | tuple[int, int] = data["index"]
        """
        The index of the liked/disliked item. Is a tuple if the component is two dimensional.
        """
        self.value: Any = data["value"]
        """
        The value of the liked/disliked item.
        """
        self.liked: bool = data.get("liked", True)
        """
        True if the item was liked, False if disliked.
        """


@document()
class RetryData(EventData):
    """
    The gr.RetryData class is a subclass of gr.Event data that specifically carries information about the `.retry()` event. When gr.RetryData
    is added as a type hint to an argument of an event listener method, a gr.RetryData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.
    Example:
        import gradio as gr

        def retry(retry_data: gr.RetryData, history: list[gr.MessageDict]):
            history_up_to_retry = history[:retry_data.index]
            new_response = ""
            for token in api.chat_completion(history):
                new_response += token
                yield history + [new_response]

        with gr.Blocks() as demo:
            chatbot = gr.Chatbot()
            chatbot.retry(retry, chatbot, chatbot)
        demo.launch()
    """

    def __init__(self, target: Block | None, data: Any):
        super().__init__(target, data)
        self.index: int | tuple[int, int] = data["index"]
        """
        The index of the user message that should be retried.
        """
        self.value: Any = data["value"]
        """
        The value of the user message that should be retried.
        """


@document()
class UndoData(EventData):
    """
    The gr.UndoData class is a subclass of gr.Event data that specifically carries information about the `.undo()` event. When gr.UndoData
    is added as a type hint to an argument of an event listener method, a gr.UndoData object will automatically be passed as the value of that argument.
    The attributes of this object contains information about the event that triggered the listener.
    Example:
        import gradio as gr

        def undo(retry_data: gr.UndoData, history: list[gr.MessageDict]):
            history_up_to_retry = history[:retry_data.index]
            return history_up_to_retry

        with gr.Blocks() as demo:
            chatbot = gr.Chatbot()
            chatbot.undo(undo, chatbot, chatbot)
        demo.launch()
    """

    def __init__(self, target: Block | None, data: Any):
        super().__init__(target, data)
        self.index: int | tuple[int, int] = data["index"]
        """
        The index of the user message that should be undone.
        """
        self.value: Any = data["value"]
        """
        The value of the user message that should be undone.
        """


@dataclasses.dataclass
class EventListenerMethod:
    block: Block | None
    event_name: str


if TYPE_CHECKING:
    EventListenerCallable = Callable[
        [
            Union[Callable, None],
            Union[Component, Sequence[Component], None],
            Union[Block, Sequence[Block], Sequence[Component], Component, None],
            Union[str, None, Literal[False]],
            bool,
            Literal["full", "minimal", "hidden"],
            Union[bool, None],
            bool,
            int,
            bool,
            bool,
            Union[dict[str, Any], list[dict[str, Any]], None],
            Union[float, None],
            Union[Literal["once", "multiple", "always_last"], None],
            Union[str, None],
            Union[int, None, Literal["default"]],
            Union[str, None],
            bool,
        ],
        Dependency,
    ]


class EventListener(str):
    def __new__(cls, event_name, *_args, **_kwargs):
        return super().__new__(cls, event_name)

    def __init__(
        self,
        event_name: str,
        has_trigger: bool = True,
        config_data: Callable[..., dict[str, Any]] = lambda: {},
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        callback: Callable | None = None,
        trigger_after: int | None = None,
        trigger_only_on_success: bool = False,
        doc: str = "",
        connection: Literal["sse", "stream"] = "sse",
        event_specific_args: list[dict[str, str]] | None = None,
    ):
        super().__init__()
        self.has_trigger = has_trigger
        self.config_data = config_data
        self.event_name = event_name
        self.show_progress = show_progress
        self.trigger_after = trigger_after
        self.trigger_only_on_success = trigger_only_on_success
        self.callback = callback
        self.doc = doc
        self.connection = connection
        self.event_specific_args = event_specific_args or []
        self.listener = self._setup(
            event_name,
            has_trigger,
            show_progress,
            callback,
            trigger_after,
            trigger_only_on_success,
            self.event_specific_args,
            self.connection,
        )
        if doc and self.listener.__doc__:
            self.listener.__doc__ = doc + self.listener.__doc__

    def set_doc(self, component: str):
        if self.listener.__doc__:
            doc = Template(self.listener.__doc__).render(component=component)
            self.listener.__doc__ = doc

    def copy(self):
        return EventListener(
            self.event_name,
            self.has_trigger,
            self.config_data,
            self.show_progress,  # type: ignore
            self.callback,
            self.trigger_after,
            self.trigger_only_on_success,
            self.doc,
            self.connection,  # type: ignore
            self.event_specific_args,
        )

    @staticmethod
    def _setup(
        _event_name: str,
        _has_trigger: bool,
        _show_progress: Literal["full", "minimal", "hidden"],
        _callback: Callable | None,
        _trigger_after: int | None,
        _trigger_only_on_success: bool,
        _event_specific_args: list[dict[str, str]],
        _connection: Literal["sse", "stream"] = "sse",
    ):
        def event_trigger(
            block: Block | None,
            fn: Callable | None | Literal["decorator"] = "decorator",
            inputs: Component
            | BlockContext
            | Sequence[Component | BlockContext]
            | Set[Component | BlockContext]
            | None = None,
            outputs: Component
            | BlockContext
            | Sequence[Component | BlockContext]
            | Set[Component | BlockContext]
            | None = None,
            api_name: str | None | Literal[False] = None,
            scroll_to_output: bool = False,
            show_progress: Literal["full", "minimal", "hidden"] = _show_progress,
            queue: bool = True,
            batch: bool = False,
            max_batch_size: int = 4,
            preprocess: bool = True,
            postprocess: bool = True,
            cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
            trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
            js: str | None = None,
            concurrency_limit: int | None | Literal["default"] = "default",
            concurrency_id: str | None = None,
            show_api: bool = True,
            time_limit: int | None = None,
            stream_every: float = 0.5,
            like_user_message: bool = False,
        ) -> Dependency:
            """
            Parameters:
                fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
                inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
                outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
                api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If set to a string, the endpoint will be exposed in the API docs with the given name. If None (default), the name of the function will be used as the API endpoint. If False, the endpoint will not be exposed in the API docs and downstream apps (including those that `gr.load` this app) will not be able to use this event.
                scroll_to_output: If True, will scroll to output component on completion
                show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
                queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
                batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
                max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
                preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
                postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
                cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
                trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
                js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
                concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
                concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
                show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            """

            if fn == "decorator":

                def wrapper(func):
                    event_trigger(
                        block=block,
                        fn=func,
                        inputs=inputs,
                        outputs=outputs,
                        api_name=api_name,
                        scroll_to_output=scroll_to_output,
                        show_progress=show_progress,
                        queue=queue,
                        batch=batch,
                        max_batch_size=max_batch_size,
                        preprocess=preprocess,
                        postprocess=postprocess,
                        cancels=cancels,
                        trigger_mode=trigger_mode,
                        js=js,
                        concurrency_limit=concurrency_limit,
                        concurrency_id=concurrency_id,
                        show_api=show_api,
                    )

                    @wraps(func)
                    def inner(*args, **kwargs):
                        return func(*args, **kwargs)

                    return inner

                return Dependency(None, {}, None, wrapper)

            from gradio.components.base import StreamingInput

            if isinstance(block, StreamingInput) and "stream" in block.events:
                block.check_streamable()  # type: ignore
            if isinstance(show_progress, bool):
                show_progress = "full" if show_progress else "hidden"

            root_block = get_blocks_context()
            if root_block is None:
                raise AttributeError(
                    f"Cannot call {_event_name} outside of a gradio.Blocks context."
                )

            event_target = EventListenerMethod(
                block if _has_trigger else None, _event_name
            )

            dep, dep_index = root_block.set_event_trigger(
                [event_target],
                fn,
                inputs,
                outputs,
                preprocess=preprocess,
                postprocess=postprocess,
                scroll_to_output=scroll_to_output,
                show_progress=show_progress,
                api_name=api_name,
                js=js,
                concurrency_limit=concurrency_limit,
                concurrency_id=concurrency_id,
                queue=queue,
                batch=batch,
                max_batch_size=max_batch_size,
                trigger_after=_trigger_after,
                trigger_only_on_success=_trigger_only_on_success,
                trigger_mode=trigger_mode,
                show_api=show_api,
                connection=_connection,
                time_limit=time_limit,
                stream_every=stream_every,
                like_user_message=like_user_message,
                event_specific_args=[
                    d["name"]
                    for d in _event_specific_args
                    if d.get("component_prop", "true") != "false"
                ]
                if _event_specific_args
                else None,
            )
            set_cancel_events(
                [event_target],
                cancels,
            )
            if _callback:
                _callback(block)
            return Dependency(block, dep.get_config(), dep_index, fn)

        event_trigger.event_name = _event_name  # type: ignore
        event_trigger.has_trigger = _has_trigger  # type: ignore
        event_trigger.callback = _callback  # type: ignore
        return event_trigger


@document()
def on(
    triggers: Sequence[EventListenerCallable] | EventListenerCallable | None = None,
    fn: Callable | None | Literal["decorator"] = "decorator",
    inputs: Component
    | BlockContext
    | Sequence[Component | BlockContext]
    | Set[Component | BlockContext]
    | None = None,
    outputs: Component
    | BlockContext
    | Sequence[Component | BlockContext]
    | Set[Component | BlockContext]
    | None = None,
    *,
    api_name: str | None | Literal[False] = None,
    scroll_to_output: bool = False,
    show_progress: Literal["full", "minimal", "hidden"] = "full",
    queue: bool = True,
    batch: bool = False,
    max_batch_size: int = 4,
    preprocess: bool = True,
    postprocess: bool = True,
    cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
    trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
    js: str | None = None,
    concurrency_limit: int | None | Literal["default"] = "default",
    concurrency_id: str | None = None,
    show_api: bool = True,
) -> Dependency:
    """
    Sets up an event listener that triggers a function when the specified event(s) occur. This is especially
    useful when the same function should be triggered by multiple events. Only a single API endpoint is generated
    for all events in the triggers list.

    Parameters:
        triggers: List of triggers to listen to, e.g. [btn.click, number.change]. If None, will run on app load and changes to any inputs.
        fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
        inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
        outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
        api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
        scroll_to_output: If True, will scroll to output component on completion
        show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
        queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
        batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
        max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
        preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
        postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
        cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
        trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
        js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs', return should be a list of values for output components.
        concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
        concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
        show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
    Example:
        import gradio as gr
        with gr.Blocks() as demo:
            with gr.Row():
                input = gr.Textbox()
                button = gr.Button("Submit")
            output = gr.Textbox()
            gr.on(
                triggers=[button.click, input.submit],
                fn=lambda x: x,
                inputs=[input],
                outputs=[output]
            )
        demo.launch()
    """
    from gradio.blocks import Block

    if not isinstance(triggers, Sequence) and triggers is not None:
        triggers = [triggers]
    triggers_typed = cast(Sequence[EventListener], triggers)

    if isinstance(inputs, Block):
        inputs = [inputs]

    if fn == "decorator":

        def wrapper(func):
            on(
                triggers,
                fn=func,
                inputs=inputs,
                outputs=outputs,
                api_name=api_name,
                scroll_to_output=scroll_to_output,
                show_progress=show_progress,
                queue=queue,
                batch=batch,
                max_batch_size=max_batch_size,
                preprocess=preprocess,
                postprocess=postprocess,
                cancels=cancels,
                js=js,
                concurrency_limit=concurrency_limit,
                concurrency_id=concurrency_id,
                show_api=show_api,
                trigger_mode=trigger_mode,
            )

            @wraps(func)
            def inner(*args, **kwargs):
                return func(*args, **kwargs)

            return inner

        return Dependency(None, {}, None, wrapper)

    root_block = get_blocks_context()
    if root_block is None:
        raise Exception("Cannot call on() outside of a gradio.Blocks context.")
    if triggers is None:
        methods = (
            [EventListenerMethod(input, "change") for input in inputs]
            if inputs is not None
            else []
        ) + [EventListenerMethod(root_block, "load")]  # type: ignore
    else:
        methods = [
            EventListenerMethod(t.__self__ if t.has_trigger else None, t.event_name)  # type: ignore
            for t in triggers_typed
        ]
    if triggers:
        for trigger in triggers:
            if trigger.callback:  # type: ignore
                trigger.callback(trigger.__self__)  # type: ignore

    dep, dep_index = root_block.set_event_trigger(
        methods,
        fn,
        inputs,
        outputs,
        preprocess=preprocess,
        postprocess=postprocess,
        scroll_to_output=scroll_to_output,
        show_progress=show_progress,
        api_name=api_name,
        js=js,
        concurrency_limit=concurrency_limit,
        concurrency_id=concurrency_id,
        queue=queue,
        batch=batch,
        max_batch_size=max_batch_size,
        show_api=show_api,
        trigger_mode=trigger_mode,
    )
    set_cancel_events(methods, cancels)
    return Dependency(None, dep.get_config(), dep_index, fn)


class Events:
    change = EventListener(
        "change",
        doc="Triggered when the value of the {{ component }} changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input.",
    )
    input = EventListener(
        "input",
        doc="This listener is triggered when the user changes the value of the {{ component }}.",
    )
    click = EventListener("click", doc="Triggered when the {{ component }} is clicked.")
    double_click = EventListener(
        "double_click", doc="Triggered when the {{ component }} is double clicked."
    )
    submit = EventListener(
        "submit",
        doc="This listener is triggered when the user presses the Enter key while the {{ component }} is focused.",
    )
    stop = EventListener(
        "stop",
        doc="This listener is triggered when the user clicks on the stop button or icon.",
    )
    edit = EventListener(
        "edit",
        doc="This listener is triggered when the user edits the {{ component }} (e.g. image) using the built-in editor.",
    )
    clear = EventListener(
        "clear",
        doc="This listener is triggered when the user clears the {{ component }} using the X button for the component.",
    )
    play = EventListener(
        "play",
        doc="This listener is triggered when the user plays the media in the {{ component }}.",
    )
    pause = EventListener(
        "pause",
        doc="This listener is triggered when the media in the {{ component }} stops for any reason.",
    )
    stop = EventListener(
        "stop",
        doc="This listener is triggered when the user reaches the end of the media playing in the {{ component }}.",
    )
    end = EventListener(
        "end",
        doc="This listener is triggered when the user reaches the end of the media playing in the {{ component }}.",
    )
    start_recording = EventListener(
        "start_recording",
        doc="This listener is triggered when the user starts recording with the {{ component }}.",
    )
    pause_recording = EventListener(
        "pause_recording",
        doc="This listener is triggered when the user pauses recording with the {{ component }}.",
    )
    stop_recording = EventListener(
        "stop_recording",
        doc="This listener is triggered when the user stops recording with the {{ component }}.",
    )
    focus = EventListener(
        "focus", doc="This listener is triggered when the {{ component }} is focused."
    )
    blur = EventListener(
        "blur",
        doc="This listener is triggered when the {{ component }} is unfocused/blurred.",
    )
    upload = EventListener(
        "upload",
        doc="This listener is triggered when the user uploads a file into the {{ component }}.",
    )
    release = EventListener(
        "release",
        doc="This listener is triggered when the user releases the mouse on this {{ component }}.",
    )
    select = EventListener(
        "select",
        callback=lambda block: setattr(block, "_selectable", True),
        doc="Event listener for when the user selects or deselects the {{ component }}. Uses event data gradio.SelectData to carry `value` referring to the label of the {{ component }}, and `selected` to refer to state of the {{ component }}. See EventData documentation on how to use this event data",
    )
    stream = EventListener(
        "stream",
        config_data=lambda: {"streamable": False},
        callback=lambda block: setattr(block, "streaming", True),
        doc="This listener is triggered when the user streams the {{ component }}.",
        connection="stream",
        show_progress="minimal",
        event_specific_args=[
            {
                "name": "stream_every",
                "type": "float = 0.5",
                "doc": "The latency (in seconds) at which stream chunks are sent to the backend. Defaults to 0.5 seconds. Parameter only used for the `.stream()` event.",
            },
            {
                "name": "time_limit",
                "type": "float | None = None",
                "doc": "The time limit for the function to run. Parameter only used for the `.stream()` event.",
                "component_prop": "false",
            },
        ],
    )
    like = EventListener(
        "like",
        config_data=lambda: {"likeable": False},
        callback=lambda block: setattr(block, "likeable", True),
        event_specific_args=[
            {
                "name": "like_user_message",
                "type": "bool = False",
                "doc": "Whether to display the like buttons for user messages in the chatbot.",
            }
        ],
        doc="This listener is triggered when the user likes/dislikes from within the {{ component }}. This event has EventData of type gradio.LikeData that carries information, accessible through LikeData.index and LikeData.value. See EventData documentation on how to use this event data.",
    )
    example_select = EventListener(
        "example_select",
        config_data=lambda: {"example_selectable": False},
        callback=lambda block: setattr(block, "example_selectable", True),
        doc="This listener is triggered when the user clicks on an example from within the {{ component }}. This event has SelectData of type gradio.SelectData that carries information, accessible through SelectData.index and SelectData.value. See SelectData documentation on how to use this event data.",
    )
    load = EventListener(
        "load",
        doc="This listener is triggered when the {{ component }} initially loads in the browser.",
    )
    key_up = EventListener(
        "key_up",
        doc="This listener is triggered when the user presses a key while the {{ component }} is focused.",
    )
    apply = EventListener(
        "apply",
        doc="This listener is triggered when the user applies changes to the {{ component }} through an integrated UI action.",
    )
    delete = EventListener(
        "delete",
        doc="This listener is triggered when the user deletes and item from the {{ component }}. Uses event data gradio.DeletedFileData to carry `value` referring to the file that was deleted as an instance of FileData. See EventData documentation on how to use this event data",
    )
    tick = EventListener(
        "tick",
        doc="This listener is triggered at regular intervals defined by the {{ component }}.",
        show_progress="hidden",
    )
    undo = EventListener(
        "undo",
        doc="This listener is triggered when the user clicks the undo button in the chatbot message.",
        callback=lambda block: setattr(block, "_undoable", True),
        config_data=lambda: {"_undoable": False},
    )
    retry = EventListener(
        "retry",
        doc="This listener is triggered when the user clicks the retry button in the chatbot message.",
        callback=lambda block: setattr(block, "_retryable", True),
        config_data=lambda: {"_retryable": False},
    )