|
import gradio as gr |
|
import torch |
|
|
|
model2 = torch.hub.load( |
|
"AK391/animegan2-pytorch:main", |
|
"generator", |
|
pretrained=True, |
|
progress=False |
|
) |
|
model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1") |
|
face2paint = torch.hub.load( |
|
'AK391/animegan2-pytorch:main', 'face2paint', |
|
size=512,side_by_side=False |
|
) |
|
|
|
def inference(img, ver): |
|
if ver == 'version 2 (πΊ robustness,π» stylization)': |
|
out = face2paint(model2, img) |
|
else: |
|
out = face2paint(model1, img) |
|
return out |
|
|
|
title = "AnimeGANv2" |
|
description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below." |
|
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>" |
|
examples=[['groot.jpeg','version 2 (πΊ robustness,π» stylization)'],['gongyoo.jpeg','version 1 (πΊ stylization, π» robustness)']] |
|
|
|
demo = gr.Interface( |
|
fn=inference, |
|
inputs=[gr.Image(type="pil"),gr.Radio(['version 1 (πΊ stylization, π» robustness)','version 2 (πΊ robustness,π» stylization)'], type="value", value='version 2 (πΊ robustness,π» stylization)', label='version')], |
|
outputs=gr.Image(type="pil"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples) |
|
|
|
demo.launch() |
|
|