xun commited on
Commit
51d460f
·
1 Parent(s): b34db2b
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,13 +1 @@
1
- ---
2
- title: Qwen Token Calc
3
- emoji: 😻
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 4.1.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # Qwen-Token-Calc
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import uuid
2
+
3
+ import gradio as gr
4
+
5
+ from transformers import AutoTokenizer
6
+
7
+ tokenizer = AutoTokenizer.from_pretrained(
8
+ "./qwen",
9
+ trust_remote_code=True,
10
+ resume_download=True,
11
+ )
12
+
13
+ with (gr.Blocks() as demo):
14
+ chatbot = gr.Chatbot()
15
+ msg = gr.Textbox()
16
+ clear = gr.ClearButton([msg, chatbot])
17
+
18
+
19
+ def respond(message, chat_history):
20
+ t = tokenizer(message)
21
+ input_ids = t['input_ids']
22
+ tokens = tokenizer.convert_ids_to_tokens(input_ids)
23
+ out = []
24
+ for o in tokens:
25
+ out.append(o.decode("utf-8", errors='replace'))
26
+
27
+ chat_history.append((message, f"tokens: {str(len(t['input_ids']))}"))
28
+ chat_history.append((None, str(out)))
29
+ return "", chat_history
30
+
31
+
32
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
33
+
34
+ demo.launch(server_name='0.0.0.0', share=False)
qwen/LICENSE ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tongyi Qianwen LICENSE AGREEMENT
2
+
3
+ Tongyi Qianwen Release Date: August 3, 2023
4
+
5
+ By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
+
7
+ 1. Definitions
8
+ a. This Tongyi Qianwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
+ b. "We"(or "Us") shall mean Alibaba Cloud.
10
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models (including Qwen model and Qwen-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
16
+ and conversions to other media types.
17
+
18
+ 2. Grant of Rights
19
+ You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
20
+
21
+ 3. Redistribution
22
+ You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
23
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
24
+ b. You shall cause any modified files to carry prominent notices stating that You changed the files;
25
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
26
+ d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
27
+
28
+ 4. Restrictions
29
+ If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, You shall request a license from Us. You cannot exercise your rights under this Agreement without our express authorization.
30
+
31
+ 5. Rules of use
32
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
33
+ b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
34
+
35
+ 6. Intellectual Property
36
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
37
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
38
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
39
+
40
+ 7. Disclaimer of Warranty and Limitation of Liability
41
+
42
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
43
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
44
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
45
+ d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
46
+
47
+ 8. Survival and Termination.
48
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
49
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
50
+
51
+ 9. Governing Law and Jurisdiction.
52
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
53
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
qwen/NOTICE ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ------------- LICENSE FOR NVIDIA Megatron-LM code --------------
2
+
3
+ Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+ * Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+ * Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in the
12
+ documentation and/or other materials provided with the distribution.
13
+ * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ contributors may be used to endorse or promote products derived
15
+ from this software without specific prior written permission.
16
+
17
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+
30
+ ------------- LICENSE FOR OpenAI tiktoken code --------------
31
+
32
+ MIT License
33
+
34
+ Copyright (c) 2022 OpenAI, Shantanu Jain
35
+
36
+ Permission is hereby granted, free of charge, to any person obtaining a copy
37
+ of this software and associated documentation files (the "Software"), to deal
38
+ in the Software without restriction, including without limitation the rights
39
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
40
+ copies of the Software, and to permit persons to whom the Software is
41
+ furnished to do so, subject to the following conditions:
42
+
43
+ The above copyright notice and this permission notice shall be included in all
44
+ copies or substantial portions of the Software.
45
+
46
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
47
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
48
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
qwen/README.md ADDED
@@ -0,0 +1,612 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
+ ---
10
+
11
+ # Qwen-14B-Chat-Int4
12
+
13
+ <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" width="400"/>
15
+ <p>
16
+ <br>
17
+
18
+ <p align="center">
19
+ 🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a>&nbsp&nbsp | &nbsp&nbsp🖥️ <a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>
20
+ <br>
21
+ <a href="https://github.com/QwenLM/Qwen/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp DingTalk (钉钉) &nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp
22
+ </p>
23
+ <br>
24
+
25
+ ## 介绍(Introduction)
26
+
27
+ **通义千问-14B(Qwen-14B)**是阿里云研发的通义千问大模型系列的140亿参数规模的模型。Qwen-14B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-14B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-14B-Chat。本仓库为Qwen-14B-Chat的Int4量化模型的仓库。
28
+
29
+ 如果您想了解更多关于通义千问-14B开源模型的细节,我们建议您参阅[GitHub代码库](https://github.com/QwenLM/Qwen)。
30
+
31
+ **Qwen-14B** is the 14B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-14B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-14B, we release Qwen-14B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for the Int4 quantized model of Qwen-14B-Chat.
32
+
33
+ For more details about the open-source model of Qwen-14B, please refer to the [GitHub](https://github.com/QwenLM/Qwen) code repository.
34
+ <br>
35
+
36
+
37
+ ## 要求(Requirements)
38
+
39
+ * python 3.8及以上版本
40
+ * pytorch 2.0及以上版本
41
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
42
+ * python 3.8 and above
43
+ * pytorch 2.0 and above, 2.0 and above are recommended
44
+ * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
45
+ <br>
46
+
47
+
48
+ ## 依赖项(Dependency)
49
+
50
+ 运行Qwen-14B-Chat-Int4,请确保满足上述要求,再执行以下pip命令安装依赖库。如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的预编译wheel。
51
+
52
+ To run Qwen-14B-Chat-Int4, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries. If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel.
53
+
54
+ ```bash
55
+ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
56
+ pip install auto-gptq optimum
57
+ ```
58
+
59
+ 另外,推荐安装`flash-attention`库(**当前已支持flash attention 2**),以实现更高的效率和更低的显存占用。
60
+
61
+ In addition, it is recommended to install the `flash-attention` library (**we support flash attention 2 now.**) for higher efficiency and lower memory usage.
62
+
63
+ ```bash
64
+ git clone https://github.com/Dao-AILab/flash-attention
65
+ cd flash-attention && pip install .
66
+ # 下方安装可选,安装可能比较缓慢。
67
+ # pip install csrc/layer_norm
68
+ # pip install csrc/rotary
69
+ ```
70
+ <br>
71
+
72
+
73
+
74
+ ## 快速使用(Quickstart)
75
+
76
+ 下面我们展示了一个使用Qwen-14B-Chat-Int4模型的样例:
77
+
78
+ We show an example of how to use Qwen-14B-Chat-Int4 in the following code:
79
+
80
+ ```python
81
+ from transformers import AutoTokenizer, AutoModelForCausalLM
82
+
83
+ # Note: The default behavior now has injection attack prevention off.
84
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True)
85
+
86
+ model = AutoModelForCausalLM.from_pretrained(
87
+ "Qwen/Qwen-14B-Chat-Int4",
88
+ device_map="auto",
89
+ trust_remote_code=True
90
+ ).eval()
91
+ response, history = model.chat(tokenizer, "你好", history=None)
92
+ print(response)
93
+ # 你好!很高兴为你提供帮助。
94
+ ```
95
+
96
+ 关于更多的使用说明,请参考我们的[GitHub repo](https://github.com/QwenLM/Qwen)获取更多信息。
97
+
98
+ For more information, please refer to our [GitHub repo](https://github.com/QwenLM/Qwen) for more information.
99
+ <br>
100
+
101
+
102
+
103
+ ## 量化 (Quantization)
104
+
105
+ ### 效果评测
106
+
107
+ 我们对BF16,Int8和Int4模型在基准评测上做了测试(使用zero-shot设置),发现量化模型效果损失较小,结果如下所示:
108
+
109
+ We illustrate the zero-shot performance of both BF16, Int8 and Int4 models on the benchmark, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below:
110
+
111
+ | Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
112
+ |--------------|:----:|:-----------:|:-----:|:---------:|
113
+ | BF16 | 64.6 | 69.8 | 60.1 | 43.9 |
114
+ | Int8 | 63.6 | 68.6 | 60.0 | 48.2 |
115
+ | Int4 | 63.3 | 69.0 | 59.8 | 45.7 |
116
+
117
+ ### 推理速度 (Inference Speed)
118
+
119
+ 我们测算了不同精度模型以及不同FlashAttn库版本下模型生成2048和8192个token的平均推理速度。如图所示:
120
+
121
+ We measured the average inference speed of generating 2048 and 8192 tokens with different quantization levels and versions of flash-attention, respectively.
122
+
123
+ | Quantization | FlashAttn | Speed (2048 tokens) | Speed (8192 tokens) |
124
+ | ------------- | :-------: | :------------------:| :------------------:|
125
+ | BF16 | v2 | 32.88 | 24.87 |
126
+ | Int8 | v2 | 29.28 | 24.22 |
127
+ | Int4 | v2 | 38.72 | 27.33 |
128
+ | BF16 | v1 | 32.76 | 28.89 |
129
+ | Int8 | v1 | 28.31 | 23.87 |
130
+ | Int4 | v1 | 37.81 | 26.46 |
131
+ | BF16 | Disabled | 29.32 | 22.91 |
132
+ | Int8 | Disabled | 31.12 | 24.60 |
133
+ | Int4 | Disabled | 37.65 | 26.00 |
134
+
135
+ 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.8。推理速度是生成8192个token的速度均值。
136
+
137
+ In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.8. The inference speed is averaged over the generated 8192 tokens.
138
+
139
+ 注意:以上Int4/Int8模型生成速度使用autogptq库给出,当前``AutoModelForCausalLM.from_pretrained``载入的模型生成速度会慢大约20%。我们已经将该问题汇报给HuggingFace团队,若有解决方案将即时更新。
140
+
141
+ Note: The generation speed of the Int4/Int8 models mentioned above is provided by the autogptq library. The current speed of the model loaded using "AutoModelForCausalLM.from_pretrained" will be approximately 20% slower. We have reported this issue to the HuggingFace team and will update it promptly if a solution is available.
142
+
143
+ ### 显存使用 (GPU Memory Usage)
144
+
145
+ 我们还测算了不同模型精度编码2048个token及生成8192个token的峰值显存占用情况。(显存消耗在是否使用FlashAttn的情况下均类似。)结果如下所示:
146
+
147
+ We also profile the peak GPU memory usage for encoding 2048 tokens as context (and generating single token) and generating 8192 tokens (with single token as context) under different quantization levels, respectively. (The GPU memory usage is similar when using flash-attention or not.)The results are shown below.
148
+
149
+ | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
150
+ | ------------------ | :---------------------------------: | :-----------------------------------: |
151
+ | BF16 | 30.15GB | 38.94GB |
152
+ | Int8 | 18.81GB | 27.54GB |
153
+ | Int4 | 13.01GB | 21.79GB |
154
+
155
+ 上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。
156
+
157
+ The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
158
+ <br>
159
+
160
+ ## Tokenizer
161
+
162
+ > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
163
+
164
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen/blob/main/tokenization_note_zh.md)。
165
+
166
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen/blob/main/tokenization_note.md).
167
+ <br>
168
+
169
+
170
+
171
+ ## 模型细节(Model)
172
+
173
+ 与Qwen-14B预训练模型相同,Qwen-14B-Chat模型规模基本情况如下所示
174
+
175
+ The details of the model architecture of Qwen-14B-Chat are listed as follows
176
+
177
+ | Hyperparameter | Value |
178
+ |:----------------|:------:|
179
+ | n_layers | 40 |
180
+ | n_heads | 40 |
181
+ | d_model | 5120 |
182
+ | vocab size | 151851 |
183
+ | sequence length | 2048 |
184
+
185
+ 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
186
+ 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
187
+
188
+ 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-14B-Chat使用了约15万token大小的词表。
189
+ 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
190
+ 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
191
+
192
+ For position encoding, FFN activation function, and normalization calculation methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
193
+
194
+ For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-14B-Chat uses a vocabulary of over 150K tokens.
195
+ It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary.
196
+ It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
197
+ <br>
198
+
199
+
200
+
201
+ ## 评测效果(Evaluation)
202
+
203
+ 对于Qwen-14B-Chat模型,我们同样评测了常规的中文理解(C-Eval)、英文理解(MMLU)、代码(HumanEval)和数学(GSM8K)等权威任务,同时包含了长序列任务的评测结果。由于Qwen-14B-Chat模型经过对齐后,激发了较强的外部系统调用能力,我们还进行了工具使用能力方面的评测。
204
+
205
+ 提示:由于硬件和框架造成的舍入误差,复现结果如有波动属于正常现象。
206
+
207
+ For Qwen-14B-Chat, we also evaluate the model on C-Eval, MMLU, HumanEval, GSM8K, etc., as well as the benchmark evaluation for long-context understanding, and tool usage.
208
+
209
+ Note: Due to rounding errors caused by hardware and framework, differences in reproduced results are possible.
210
+
211
+ ### 中文评测(Chinese Evaluation)
212
+
213
+ #### C-Eval
214
+
215
+ 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-14B-Chat模型的0-shot & 5-shot准确率
216
+
217
+ We demonstrate the 0-shot & 5-shot accuracy of Qwen-14B-Chat on C-Eval validation set
218
+
219
+ | Model | Avg. Acc. |
220
+ |:--------------------------------:|:---------:|
221
+ | LLaMA2-7B-Chat | 31.9 |
222
+ | LLaMA2-13B-Chat | 36.2 |
223
+ | LLaMA2-70B-Chat | 44.3 |
224
+ | ChatGLM2-6B-Chat | 52.6 |
225
+ | InternLM-7B-Chat | 53.6 |
226
+ | Baichuan2-7B-Chat | 55.6 |
227
+ | Baichuan2-13B-Chat | 56.7 |
228
+ | Qwen-7B-Chat (original) (0-shot) | 54.2 |
229
+ | **Qwen-7B-Chat (0-shot)** | 59.7 |
230
+ | **Qwen-7B-Chat (5-shot)** | 59.3 |
231
+ | **Qwen-14B-Chat (0-shot)** | 69.8 |
232
+ | **Qwen-14B-Chat (5-shot)** | **71.7** |
233
+
234
+ C-Eval测试集上,Qwen-14B-Chat模型的zero-shot准确率结果如下:
235
+
236
+ The zero-shot accuracy of Qwen-14B-Chat on C-Eval testing set is provided below:
237
+
238
+ | Model | Avg. | STEM | Social Sciences | Humanities | Others |
239
+ | :---------------------- | :------: | :--: | :-------------: | :--------: | :----: |
240
+ | Chinese-Alpaca-Plus-13B | 41.5 | 36.6 | 49.7 | 43.1 | 41.2 |
241
+ | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - |
242
+ | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 |
243
+ | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
244
+ | Qwen-7B-Chat (original) | 54.6 | 47.8 | 67.6 | 59.3 | 50.6 |
245
+ | **Qwen-7B-Chat** | 58.6 | 53.3 | 72.1 | 62.8 | 52.0 |
246
+ | **Qwen-14B-Chat** | **69.1** | 65.1 | 80.9 | 71.2 | 63.4 |
247
+
248
+ 在14B规模模型上,经过人类指令对齐的Qwen-14B-Chat模型,准确率在同类相近规模模型中仍然处于前列。
249
+
250
+ Compared with other pretrained models with comparable model size, the human-aligned Qwen-14B-Chat performs well in C-Eval accuracy.
251
+
252
+ ### 英文评测(English Evaluation)
253
+
254
+ #### MMLU
255
+
256
+ [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-14B-Chat模型的 0-shot & 5-shot 准确率如下,效果同样在同类对齐模型中同样表现较优。
257
+
258
+ The 0-shot & 5-shot accuracy of Qwen-14B-Chat on MMLU is provided below.
259
+ The performance of Qwen-14B-Chat still on the top between other human-aligned models with comparable size.
260
+
261
+ | Model | Avg. Acc. |
262
+ |:--------------------------------:|:---------:|
263
+ | ChatGLM2-6B-Chat | 46.0 |
264
+ | LLaMA2-7B-Chat | 46.2 |
265
+ | InternLM-7B-Chat | 51.1 |
266
+ | Baichuan2-7B-Chat | 52.9 |
267
+ | LLaMA2-13B-Chat | 54.6 |
268
+ | Baichuan2-13B-Chat | 57.3 |
269
+ | LLaMA2-70B-Chat | 63.8 |
270
+ | Qwen-7B-Chat (original) (0-shot) | 53.9 |
271
+ | **Qwen-7B-Chat (0-shot)** | 55.8 |
272
+ | **Qwen-7B-Chat (5-shot)** | 57.0 |
273
+ | **Qwen-14B-Chat (0-shot)** | 64.6 |
274
+ | **Qwen-14B-Chat (5-shot)** | **66.5** |
275
+
276
+ ### 代码评测(Coding Evaluation)
277
+
278
+ Qwen-14B-Chat在[HumanEval](https://github.com/openai/human-eval)的zero-shot Pass@1效果如下
279
+
280
+ The zero-shot Pass@1 of Qwen-14B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below
281
+
282
+ | Model | Pass@1 |
283
+ |:-----------------------:|:--------:|
284
+ | ChatGLM2-6B-Chat | 11.0 |
285
+ | LLaMA2-7B-Chat | 12.2 |
286
+ | InternLM-7B-Chat | 14.6 |
287
+ | Baichuan2-7B-Chat | 13.4 |
288
+ | LLaMA2-13B-Chat | 18.9 |
289
+ | Baichuan2-13B-Chat | 17.7 |
290
+ | LLaMA2-70B-Chat | 32.3 |
291
+ | Qwen-7B-Chat (original) | 24.4 |
292
+ | **Qwen-7B-Chat** | 37.2 |
293
+ | **Qwen-14B-Chat** | **43.9** |
294
+
295
+ ### 数学评测(Mathematics Evaluation)
296
+
297
+ 在评测数学能力的[GSM8K](https://github.com/openai/grade-school-math)上,Qwen-14B-Chat的准确率结果如下
298
+
299
+ The accuracy of Qwen-14B-Chat on GSM8K is shown below
300
+
301
+ | Model | Acc. |
302
+ |:--------------------------------:|:--------:|
303
+ | LLaMA2-7B-Chat | 26.3 |
304
+ | ChatGLM2-6B-Chat | 28.8 |
305
+ | Baichuan2-7B-Chat | 32.8 |
306
+ | InternLM-7B-Chat | 33.0 |
307
+ | LLaMA2-13B-Chat | 37.1 |
308
+ | Baichuan2-13B-Chat | 55.3 |
309
+ | LLaMA2-70B-Chat | 59.3 |
310
+ | Qwen-7B-Chat (original) (0-shot) | 41.1 |
311
+ | **Qwen-7B-Chat (0-shot)** | 50.3 |
312
+ | **Qwen-7B-Chat (8-shot)** | 54.1 |
313
+ | **Qwen-14B-Chat (0-shot)** | **60.1** |
314
+ | **Qwen-14B-Chat (8-shot)** | 59.3 |
315
+
316
+ ### 长序列评测(Long-Context Understanding)
317
+
318
+ 通过NTK插值,LogN注意力缩放可以扩展Qwen-14B-Chat的上下文长度。在长文本摘要数据集[VCSUM](https://arxiv.org/abs/2305.05280)上(文本平均长度在15K左右),Qwen-14B-Chat的Rouge-L结果如下:
319
+
320
+ **(若要启用这些技巧,请将config.json里的`use_dynamic_ntk`和`use_logn_attn`设置为true)**
321
+
322
+ We introduce NTK-aware interpolation, LogN attention scaling to extend the context length of Qwen-14B-Chat. The Rouge-L results of Qwen-14B-Chat on long-text summarization dataset [VCSUM](https://arxiv.org/abs/2305.05280) (The average length of this dataset is around 15K) are shown below:
323
+
324
+ **(To use these tricks, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
325
+
326
+ | Model | VCSUM (zh) |
327
+ |:------------------|:----------:|
328
+ | GPT-3.5-Turbo-16k | 16.0 |
329
+ | LLama2-7B-Chat | 0.2 |
330
+ | InternLM-7B-Chat | 13.0 |
331
+ | ChatGLM2-6B-Chat | 16.3 |
332
+ | **Qwen-14B-Chat** | **17.3** |
333
+
334
+
335
+ ### 工具使用能力的评测(Tool Usage)
336
+
337
+ #### ReAct Prompting
338
+
339
+ 千问支持通过 [ReAct Prompting](https://arxiv.org/abs/2210.03629) 调用插件/工具/API。ReAct 也是 [LangChain](https://python.langchain.com/) 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下:
340
+
341
+ Qwen-Chat supports calling plugins/tools/APIs through [ReAct Prompting](https://arxiv.org/abs/2210.03629). ReAct is also one of the main approaches used by the [LangChain](https://python.langchain.com/) framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-Chat's performance is as follows:
342
+
343
+ <table>
344
+ <tr>
345
+ <th colspan="4" align="center">Chinese Tool-Use Benchmark</th>
346
+ </tr>
347
+ <tr>
348
+ <th align="center">Model</th><th align="center">Tool Selection (Acc.↑)</th><th align="center">Tool Input (Rouge-L↑)</th><th align="center">False Positive Error↓</th>
349
+ </tr>
350
+ <tr>
351
+ <td>GPT-4</td><td align="center">95%</td><td align="center">0.90</td><td align="center">15.0%</td>
352
+ </tr>
353
+ <tr>
354
+ <td>GPT-3.5</td><td align="center">85%</td><td align="center">0.88</td><td align="center">75.0%</td>
355
+ </tr>
356
+ <tr>
357
+ <td>Qwen-7B-Chat</td><td align="center">98%</td><td align="center">0.91</td><td align="center">7.3%</td>
358
+ </tr>
359
+ <tr>
360
+ <td>Qwen-14B-Chat</td><td align="center">98%</td><td align="center">0.93</td><td align="center">2.4%</td>
361
+ </tr>
362
+ </table>
363
+
364
+ > 评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。
365
+
366
+ > The plugins that appear in the evaluation set do not appear in the training set of Qwen. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query.
367
+
368
+ ![](assets/react_showcase_001.png)
369
+ ![](assets/react_showcase_002.png)
370
+
371
+ #### Code Interpreter
372
+
373
+ 为了考察Qwen使用Python Code Interpreter完成数学解题、数据可视化、及文件处理与爬虫等任务的能力,我们专门建设并开源了一个评测这方面能力的[评测基准](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark)。
374
+
375
+ 我们发现Qwen在生成代码的可执行率、结果正确性上均表现较好:
376
+
377
+ To assess Qwen's ability to use the Python Code Interpreter for tasks such as mathematical problem solving, data visualization, and other general-purpose tasks such as file handling and web scraping, we have created and open-sourced a benchmark specifically designed for evaluating these capabilities. You can find the benchmark at this [link](https://github.com/QwenLM/Qwen-Agent/tree/main/benchmark).
378
+
379
+ We have observed that Qwen performs well in terms of code executability and result accuracy when generating code:
380
+
381
+ <table>
382
+ <tr>
383
+ <th colspan="4" align="center">Executable Rate of Generated Code (%)</th>
384
+ </tr>
385
+ <tr>
386
+ <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization↑</th><th align="center">General↑</th>
387
+ </tr>
388
+ <tr>
389
+ <td>GPT-4</td><td align="center">91.9</td><td align="center">85.9</td><td align="center">82.8</td>
390
+ </tr>
391
+ <tr>
392
+ <td>GPT-3.5</td><td align="center">89.2</td><td align="center">65.0</td><td align="center">74.1</td>
393
+ </tr>
394
+ <tr>
395
+ <td>LLaMA2-7B-Chat</td>
396
+ <td align="center">41.9</td>
397
+ <td align="center">33.1</td>
398
+ <td align="center">24.1 </td>
399
+ </tr>
400
+ <tr>
401
+ <td>LLaMA2-13B-Chat</td>
402
+ <td align="center">50.0</td>
403
+ <td align="center">40.5</td>
404
+ <td align="center">48.3 </td>
405
+ </tr>
406
+ <tr>
407
+ <td>CodeLLaMA-7B-Instruct</td>
408
+ <td align="center">85.1</td>
409
+ <td align="center">54.0</td>
410
+ <td align="center">70.7 </td>
411
+ </tr>
412
+ <tr>
413
+ <td>CodeLLaMA-13B-Instruct</td>
414
+ <td align="center">93.2</td>
415
+ <td align="center">55.8</td>
416
+ <td align="center">74.1 </td>
417
+ </tr>
418
+ <tr>
419
+ <td>InternLM-7B-Chat-v1.1</td>
420
+ <td align="center">78.4</td>
421
+ <td align="center">44.2</td>
422
+ <td align="center">62.1 </td>
423
+ </tr>
424
+ <tr>
425
+ <td>InternLM-20B-Chat</td>
426
+ <td align="center">70.3</td>
427
+ <td align="center">44.2</td>
428
+ <td align="center">65.5 </td>
429
+ </tr>
430
+ <tr>
431
+ <td>Qwen-7B-Chat</td>
432
+ <td align="center">82.4</td>
433
+ <td align="center">64.4</td>
434
+ <td align="center">67.2 </td>
435
+ </tr>
436
+ <tr>
437
+ <td>Qwen-14B-Chat</td>
438
+ <td align="center">89.2</td>
439
+ <td align="center">84.1</td>
440
+ <td align="center">65.5</td>
441
+ </tr>
442
+ </table>
443
+
444
+ <table>
445
+ <tr>
446
+ <th colspan="4" align="center">Accuracy of Code Execution Results (%)</th>
447
+ </tr>
448
+ <tr>
449
+ <th align="center">Model</th><th align="center">Math↑</th><th align="center">Visualization-Hard↑</th><th align="center">Visualization-Easy↑</th>
450
+ </tr>
451
+ <tr>
452
+ <td>GPT-4</td><td align="center">82.8</td><td align="center">66.7</td><td align="center">60.8</td>
453
+ </tr>
454
+ <tr>
455
+ <td>GPT-3.5</td><td align="center">47.3</td><td align="center">33.3</td><td align="center">55.7</td>
456
+ </tr>
457
+ <tr>
458
+ <td>LLaMA2-7B-Chat</td>
459
+ <td align="center">3.9</td>
460
+ <td align="center">14.3</td>
461
+ <td align="center">39.2 </td>
462
+ </tr>
463
+ <tr>
464
+ <td>LLaMA2-13B-Chat</td>
465
+ <td align="center">8.3</td>
466
+ <td align="center">8.3</td>
467
+ <td align="center">40.5 </td>
468
+ </tr>
469
+ <tr>
470
+ <td>CodeLLaMA-7B-Instruct</td>
471
+ <td align="center">14.3</td>
472
+ <td align="center">26.2</td>
473
+ <td align="center">60.8 </td>
474
+ </tr>
475
+ <tr>
476
+ <td>CodeLLaMA-13B-Instruct</td>
477
+ <td align="center">28.2</td>
478
+ <td align="center">27.4</td>
479
+ <td align="center">62.0 </td>
480
+ </tr>
481
+ <tr>
482
+ <td>InternLM-7B-Chat-v1.1</td>
483
+ <td align="center">28.5</td>
484
+ <td align="center">4.8</td>
485
+ <td align="center">40.5 </td>
486
+ </tr>
487
+ <tr>
488
+ <td>InternLM-20B-Chat</td>
489
+ <td align="center">34.6</td>
490
+ <td align="center">21.4</td>
491
+ <td align="center">45.6 </td>
492
+ </tr>
493
+ <tr>
494
+ <td>Qwen-7B-Chat</td>
495
+ <td align="center">41.9</td>
496
+ <td align="center">40.5</td>
497
+ <td align="center">54.4 </td>
498
+ </tr>
499
+ <tr>
500
+ <td>Qwen-14B-Chat</td>
501
+ <td align="center">58.4</td>
502
+ <td align="center">53.6</td>
503
+ <td align="center">59.5</td>
504
+ </tr>
505
+ </table>
506
+
507
+ <p align="center">
508
+ <br>
509
+ <img src="assets/code_interpreter_showcase_001.jpg" />
510
+ <br>
511
+ <p>
512
+
513
+ #### Huggingface Agent
514
+
515
+ 千问还具备作为 [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents) 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下:
516
+
517
+ Qwen-Chat also has the capability to be used as a [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents). Its performance on the run-mode benchmark provided by HuggingFace is as follows:
518
+
519
+ <table>
520
+ <tr>
521
+ <th colspan="4" align="center">HuggingFace Agent Benchmark- Run Mode</th>
522
+ </tr>
523
+ <tr>
524
+ <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th>
525
+ </tr>
526
+ <tr>
527
+ <td>GPT-4</td><td align="center">100</td><td align="center">100</td><td align="center">97.4</td>
528
+ </tr>
529
+ <tr>
530
+ <td>GPT-3.5</td><td align="center">95.4</td><td align="center">96.3</td><td align="center">87.0</td>
531
+ </tr>
532
+ <tr>
533
+ <td>StarCoder-Base-15B</td><td align="center">86.1</td><td align="center">87.0</td><td align="center">68.9</td>
534
+ </tr>
535
+ <tr>
536
+ <td>StarCoder-15B</td><td align="center">87.0</td><td align="center">88.0</td><td align="center">68.9</td>
537
+ </tr>
538
+ <tr>
539
+ <td>Qwen-7B-Chat</td><td align="center">87.0</td><td align="center">87.0</td><td align="center">71.5</td>
540
+ </tr>
541
+ <tr>
542
+ <td>Qwen-14B-Chat</td><td align="center">93.5</td><td align="center">94.4</td><td align="center">87.0</td>
543
+ </tr>
544
+ </table>
545
+
546
+ <table>
547
+ <tr>
548
+ <th colspan="4" align="center">HuggingFace Agent Benchmark - Chat Mode</th>
549
+ </tr>
550
+ <tr>
551
+ <th align="center">Model</th><th align="center">Tool Selection↑</th><th align="center">Tool Used↑</th><th align="center">Code↑</th>
552
+ </tr>
553
+ <tr>
554
+ <td>GPT-4</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">98.5</td>
555
+ </tr>
556
+ <tr>
557
+ <td>GPT-3.5</td><td align="center">97.3</td><td align="center">96.8</td><td align="center">89.6</td>
558
+ </tr>
559
+ <tr>
560
+ <td>StarCoder-Base-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">91.1</td>
561
+ </tr>
562
+ <tr>
563
+ <td>StarCoder-15B</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">89.6</td>
564
+ </tr>
565
+ <tr>
566
+ <td>Qwen-7B-Chat</td><td align="center">94.7</td><td align="center">94.7</td><td align="center">85.1</td>
567
+ </tr>
568
+ <tr>
569
+ <td>Qwen-14B-Chat</td><td align="center">97.9</td><td align="center">97.9</td><td align="center">95.5</td>
570
+ </tr>
571
+ </table>
572
+
573
+ <br>
574
+
575
+ ## FAQ
576
+
577
+ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
578
+
579
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
580
+ <br>
581
+
582
+ ## 引用 (Citation)
583
+
584
+ 如果你觉得我们的工作对你有帮助,欢迎引用!
585
+
586
+ If you find our work helpful, feel free to give us a cite.
587
+
588
+ ```
589
+ @article{qwen,
590
+ title={Qwen Technical Report},
591
+ author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
592
+ journal={arXiv preprint arXiv:2309.16609},
593
+ year={2023}
594
+ }
595
+ ```
596
+ <br>
597
+
598
+ ## 使用协议(License Agreement)
599
+
600
+ 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/LICENSE)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
601
+
602
+ Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen/blob/main/LICENSE) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
603
+ <br>
604
+
605
+
606
+
607
+ ## 联系我们(Contact Us)
608
+
609
+ 如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord��同时,也欢迎通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
610
+
611
+ If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to qianwen_opensource@alibabacloud.com.
612
+
qwen/cache_autogptq_cuda_256.cpp ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/all.h>
2
+ #include <torch/python.h>
3
+ #include <c10/cuda/CUDAGuard.h>
4
+
5
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_256.cpp
6
+ void vecquant8matmul_cuda(
7
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
8
+ torch::Tensor scales, torch::Tensor zeros,
9
+ torch::Tensor g_idx
10
+ );
11
+
12
+ void vecquant8matmul(
13
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
14
+ torch::Tensor scales, torch::Tensor zeros,
15
+ torch::Tensor g_idx
16
+ ) {
17
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
18
+ vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
19
+ }
20
+
21
+ void vecquant8matmul_batched_cuda(
22
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
23
+ torch::Tensor scales, torch::Tensor zeros
24
+ );
25
+
26
+ void vecquant8matmul_batched(
27
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
28
+ torch::Tensor scales, torch::Tensor zeros
29
+ ) {
30
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
31
+ vecquant8matmul_batched_cuda(vec, mat, mul, scales, zeros);
32
+ }
33
+
34
+ void vecquant8matmul_batched_column_compression_cuda(
35
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
36
+ torch::Tensor scales, torch::Tensor zeros
37
+ );
38
+
39
+ void vecquant8matmul_batched_column_compression(
40
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
41
+ torch::Tensor scales, torch::Tensor zeros
42
+ ) {
43
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
44
+ vecquant8matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
45
+ }
46
+
47
+ void vecquant4matmul_batched_cuda(
48
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
49
+ torch::Tensor scales, torch::Tensor zeros
50
+ );
51
+
52
+ void vecquant4matmul_batched(
53
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
54
+ torch::Tensor scales, torch::Tensor zeros
55
+ ) {
56
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
57
+ vecquant4matmul_batched_cuda(vec, mat, mul, scales, zeros);
58
+ }
59
+
60
+ void vecquant4matmul_batched_column_compression_cuda(
61
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
62
+ torch::Tensor scales, torch::Tensor zeros
63
+ );
64
+
65
+ void vecquant4matmul_batched_column_compression(
66
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
67
+ torch::Tensor scales, torch::Tensor zeros
68
+ ) {
69
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
70
+ vecquant4matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
71
+ }
72
+
73
+ void vecquant8matmul_batched_old_cuda(
74
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
75
+ torch::Tensor scales, torch::Tensor zeros
76
+ );
77
+
78
+ void vecquant8matmul_batched_old(
79
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
80
+ torch::Tensor scales, torch::Tensor zeros
81
+ ) {
82
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
83
+ vecquant8matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
84
+ }
85
+
86
+
87
+ void vecquant4matmul_batched_old_cuda(
88
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
89
+ torch::Tensor scales, torch::Tensor zeros
90
+ );
91
+
92
+ void vecquant4matmul_batched_old(
93
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
94
+ torch::Tensor scales, torch::Tensor zeros
95
+ ) {
96
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
97
+ vecquant4matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
98
+ }
99
+
100
+ void vecquant8matmul_batched_column_compression_old_cuda(
101
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
102
+ torch::Tensor scales, torch::Tensor zeros
103
+ );
104
+
105
+ void vecquant8matmul_batched_column_compression_old(
106
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
107
+ torch::Tensor scales, torch::Tensor zeros
108
+ ) {
109
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
110
+ vecquant8matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
111
+ }
112
+
113
+ void vecquant4matmul_batched_column_compression_old_cuda(
114
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
115
+ torch::Tensor scales, torch::Tensor zeros
116
+ );
117
+
118
+ void vecquant4matmul_batched_column_compression_old(
119
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
120
+ torch::Tensor scales, torch::Tensor zeros
121
+ ) {
122
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
123
+ vecquant4matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
124
+ }
125
+
126
+
127
+
128
+ void vecquant8matmul_batched_faster_cuda(
129
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
130
+ torch::Tensor scales, torch::Tensor zeros
131
+ );
132
+
133
+ void vecquant8matmul_batched_faster(
134
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
135
+ torch::Tensor scales, torch::Tensor zeros
136
+ ) {
137
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
138
+ vecquant8matmul_batched_faster_cuda(vec, mat, mul, scales, zeros);
139
+ }
140
+
141
+
142
+ void vecquant8matmul_batched_faster_old_cuda(
143
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
144
+ torch::Tensor scales, torch::Tensor zeros
145
+ );
146
+
147
+ void vecquant8matmul_batched_faster_old(
148
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
149
+ torch::Tensor scales, torch::Tensor zeros
150
+ ) {
151
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
152
+ vecquant8matmul_batched_faster_old_cuda(vec, mat, mul, scales, zeros);
153
+ }
154
+
155
+ void vecquant8matmul_batched_column_compression_faster_cuda(
156
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
157
+ torch::Tensor scales, torch::Tensor zeros
158
+ );
159
+
160
+ void vecquant8matmul_batched_column_compression_faster(
161
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
162
+ torch::Tensor scales, torch::Tensor zeros
163
+ ) {
164
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
165
+ vecquant8matmul_batched_column_compression_faster_cuda(vec, mat, mul, scales, zeros);
166
+ }
167
+
168
+
169
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
170
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
171
+ torch::Tensor scales, torch::Tensor zeros
172
+ );
173
+
174
+ void vecquant8matmul_batched_column_compression_faster_old(
175
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
176
+ torch::Tensor scales, torch::Tensor zeros
177
+ ) {
178
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
179
+ vecquant8matmul_batched_column_compression_faster_old_cuda(vec, mat, mul, scales, zeros);
180
+ }
181
+
182
+
183
+
184
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
185
+ m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
186
+ m.def("vecquant8matmul_batched", &vecquant8matmul_batched, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
187
+ m.def("vecquant8matmul_batched_old", &vecquant8matmul_batched_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
188
+ m.def("vecquant8matmul_batched_faster", &vecquant8matmul_batched_faster, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
189
+ m.def("vecquant8matmul_batched_faster_old", &vecquant8matmul_batched_faster_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
190
+ m.def("vecquant4matmul_batched_old", &vecquant4matmul_batched_old, "Vector 4-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
191
+ m.def("vecquant8matmul_batched_column_compression", &vecquant8matmul_batched_column_compression, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
192
+ m.def("vecquant8matmul_batched_column_compression_old", &vecquant8matmul_batched_column_compression_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
193
+ m.def("vecquant8matmul_batched_column_compression_faster", &vecquant8matmul_batched_column_compression_faster, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
194
+ m.def("vecquant8matmul_batched_column_compression_faster_old", &vecquant8matmul_batched_column_compression_faster_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
195
+ m.def("vecquant4matmul_batched_column_compression_old", &vecquant4matmul_batched_column_compression_old, "Vector old 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
196
+ m.def("vecquant4matmul_batched", &vecquant4matmul_batched, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
197
+ m.def("vecquant4matmul_batched_column_compression", &vecquant4matmul_batched_column_compression, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
198
+ }
qwen/cache_autogptq_cuda_kernel_256.cu ADDED
@@ -0,0 +1,1708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #define _CRT_SECURE_NO_WARNINGS
2
+ #include <torch/all.h>
3
+ #include <torch/python.h>
4
+ #include <cuda.h>
5
+ #include <cuda_runtime.h>
6
+ #include <cuda_fp16.h>
7
+ #include <stdint.h>
8
+
9
+ #if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
10
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
11
+ __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
12
+ unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
13
+ unsigned int old = *address_as_ui;
14
+ unsigned int assumed;
15
+
16
+ do {
17
+ assumed = old;
18
+ unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
19
+ hsum += val;
20
+ old = reinterpret_cast<size_t>(address) & 2
21
+ ? (old & 0xffff) | (hsum << 16)
22
+ : (old & 0xffff0000) | hsum;
23
+ old = atomicCAS(address_as_ui, assumed, old);
24
+
25
+ // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
26
+ } while (assumed != old);
27
+ }
28
+ __device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
29
+ unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
30
+ unsigned int old = *address_as_ui;
31
+ unsigned int assumed;
32
+
33
+ do {
34
+ assumed = old;
35
+ __half_raw hsum;
36
+ hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
37
+ half tmpres = __hadd(hsum, val);
38
+ hsum = __half_raw(tmpres);
39
+ old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
40
+ old = atomicCAS(address_as_ui, assumed, old);
41
+ } while (assumed != old);
42
+ }
43
+ #endif
44
+
45
+ template <typename scalar_t>
46
+ __global__ void VecQuant8MatMulKernel(
47
+ const scalar_t* __restrict__ vec,
48
+ const int* __restrict__ mat,
49
+ scalar_t* __restrict__ mul,
50
+ const scalar_t* __restrict__ scales,
51
+ const int* __restrict__ zeros,
52
+ const int* __restrict__ g_idx,
53
+ int batch,
54
+ int vec_height,
55
+ int height,
56
+ int width,
57
+ int zero_width
58
+ );
59
+
60
+ template <typename scalar_t>
61
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
62
+ const scalar_t* __restrict__ vec,
63
+ const int* __restrict__ mat,
64
+ scalar_t* __restrict__ mul,
65
+ const scalar_t* __restrict__ scales,
66
+ const int* __restrict__ zeros,
67
+ int batch,
68
+ int heads,
69
+ int vec_row,
70
+ int height,
71
+ int width
72
+ );
73
+
74
+ template <typename scalar_t>
75
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
76
+ const scalar_t* __restrict__ vec,
77
+ const int* __restrict__ mat,
78
+ scalar_t* __restrict__ mul,
79
+ const scalar_t* __restrict__ scales,
80
+ const int* __restrict__ zeros,
81
+ int batch,
82
+ int heads,
83
+ int vec_row,
84
+ int height,
85
+ int width
86
+ );
87
+
88
+ template <typename scalar_t>
89
+ __global__ void VecQuant8BatchMatMulKernel(
90
+ const scalar_t* __restrict__ vec,
91
+ const int* __restrict__ mat,
92
+ scalar_t* __restrict__ mul,
93
+ const scalar_t* __restrict__ scales,
94
+ const int* __restrict__ zeros,
95
+ int batch,
96
+ int heads,
97
+ int vec_row,
98
+ int vec_height,
99
+ int height,
100
+ int width,
101
+ int zero_width
102
+ );
103
+
104
+ template <typename scalar_t>
105
+ __global__ void VecQuant4BatchMatMulKernel(
106
+ const scalar_t* __restrict__ vec,
107
+ const int* __restrict__ mat,
108
+ scalar_t* __restrict__ mul,
109
+ const scalar_t* __restrict__ scales,
110
+ const int* __restrict__ zeros,
111
+ int batch,
112
+ int heads,
113
+ int vec_row,
114
+ int vec_height,
115
+ int height,
116
+ int width,
117
+ int zero_width
118
+ );
119
+
120
+
121
+
122
+ template <typename scalar_t>
123
+ __global__ void VecQuant8BatchMatMulKernel_old(
124
+ const scalar_t* __restrict__ vec,
125
+ const uint8_t* __restrict__ mat,
126
+ scalar_t* __restrict__ mul,
127
+ const scalar_t* __restrict__ scales,
128
+ const scalar_t* __restrict__ zeros,
129
+ int batch,
130
+ int heads,
131
+ int vec_row,
132
+ int vec_height,
133
+ int height,
134
+ int width,
135
+ int zero_width
136
+ );
137
+
138
+ __global__ void VecQuant8BatchMatMulKernel_faster(
139
+ const half* __restrict__ vec,
140
+ const uint8_t* __restrict__ mat,
141
+ half* __restrict__ mul,
142
+ const half* __restrict__ scales,
143
+ const half* __restrict__ zeros,
144
+ int batch,
145
+ int heads,
146
+ int vec_row,
147
+ int vec_height,
148
+ int height,
149
+ int width,
150
+ int zero_width
151
+ );
152
+
153
+
154
+
155
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
156
+ const half* __restrict__ vec,
157
+ const uint8_t* __restrict__ mat,
158
+ half* __restrict__ mul,
159
+ const half* __restrict__ scales,
160
+ const half* __restrict__ zeros,
161
+ int batch,
162
+ int heads,
163
+ int vec_row,
164
+ int vec_height,
165
+ int height,
166
+ int width
167
+ );
168
+
169
+
170
+ template <typename scalar_t>
171
+ __global__ void VecQuant4BatchMatMulKernel_old(
172
+ const scalar_t* __restrict__ vec,
173
+ const uint8_t* __restrict__ mat,
174
+ scalar_t* __restrict__ mul,
175
+ const scalar_t* __restrict__ scales,
176
+ const scalar_t* __restrict__ zeros,
177
+ int batch,
178
+ int heads,
179
+ int vec_row,
180
+ int vec_height,
181
+ int height,
182
+ int width,
183
+ int zero_width
184
+ );
185
+
186
+
187
+ template <typename scalar_t>
188
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
189
+ const scalar_t* __restrict__ vec,
190
+ const uint8_t* __restrict__ mat,
191
+ scalar_t* __restrict__ mul,
192
+ const scalar_t* __restrict__ scales,
193
+ const scalar_t* __restrict__ zeros,
194
+ int batch,
195
+ int heads,
196
+ int vec_row,
197
+ int height,
198
+ int width
199
+ );
200
+
201
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
202
+ const half* __restrict__ vec,
203
+ const uint8_t* __restrict__ mat,
204
+ half* __restrict__ mul,
205
+ const half* __restrict__ scales,
206
+ const half* __restrict__ zeros,
207
+ int batch,
208
+ int heads,
209
+ int vec_row,
210
+ int height,
211
+ int width
212
+ );
213
+
214
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
215
+ const half* __restrict__ vec,
216
+ const uint8_t* __restrict__ mat,
217
+ half* __restrict__ mul,
218
+ const half* __restrict__ scales,
219
+ const half* __restrict__ zeros,
220
+ int batch,
221
+ int heads,
222
+ int vec_row,
223
+ int height,
224
+ int width
225
+ );
226
+
227
+
228
+ template <typename scalar_t>
229
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
230
+ const scalar_t* __restrict__ vec,
231
+ const uint8_t* __restrict__ mat,
232
+ scalar_t* __restrict__ mul,
233
+ const scalar_t* __restrict__ scales,
234
+ const scalar_t* __restrict__ zeros,
235
+ int batch,
236
+ int heads,
237
+ int vec_row,
238
+ int height,
239
+ int width
240
+ );
241
+
242
+
243
+ __global__ void VecQuant8BatchMatMulKernel_faster(
244
+ const half* __restrict__ vec,
245
+ const uint8_t* __restrict__ mat,
246
+ half* __restrict__ mul,
247
+ const half* __restrict__ scales,
248
+ const half* __restrict__ zeros,
249
+ int batch,
250
+ int heads,
251
+ int vec_row,
252
+ int vec_height,
253
+ int height,
254
+ int width
255
+ );
256
+
257
+
258
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
259
+ const half* __restrict__ vec,
260
+ const uint8_t* __restrict__ mat,
261
+ half* __restrict__ mul,
262
+ const half* __restrict__ scales,
263
+ const half* __restrict__ zeros,
264
+ int batch,
265
+ int heads,
266
+ int vec_row,
267
+ int height,
268
+ int width
269
+ );
270
+
271
+ const int BLOCKWIDTH = 128;
272
+ const int BLOCKHEIGHT8 = 32;
273
+ const int BLOCKHEIGHT4 = 16;
274
+ const int BLOCKHEIGHT_OLD4 = 128;
275
+ //const int BLOCKHEIGHT_OLD8 = 128;
276
+
277
+ __device__ inline unsigned int as_unsigned(int i) {
278
+ return *reinterpret_cast<unsigned int*>(&i);
279
+ }
280
+
281
+ __device__ inline int as_int(int i) {
282
+ return *reinterpret_cast<int*>(&i);
283
+ }
284
+
285
+ void vecquant8matmul_batched_column_compression_cuda(
286
+ torch::Tensor vec,
287
+ torch::Tensor mat,
288
+ torch::Tensor mul,
289
+ torch::Tensor scales,
290
+ torch::Tensor zeros
291
+ ) {
292
+ int batch = vec.size(0);
293
+ int heads = vec.size(1);
294
+ int vec_row = vec.size(2);
295
+ int height = vec.size(3);
296
+ int width = mat.size(3) * 4;
297
+
298
+ dim3 blocks(
299
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
300
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
301
+ );
302
+ dim3 threads(BLOCKWIDTH);
303
+
304
+ AT_DISPATCH_FLOATING_TYPES(
305
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
306
+ VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
307
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
308
+ scales.data<scalar_t>(), zeros.data<int>(),
309
+ batch, heads, vec_row, height, width
310
+ );
311
+ })
312
+ );
313
+
314
+ }
315
+
316
+ template <typename scalar_t>
317
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
318
+ const scalar_t* __restrict__ vec,
319
+ const int* __restrict__ mat,
320
+ scalar_t* __restrict__ mul,
321
+ const scalar_t* __restrict__ scales,
322
+ const int* __restrict__ zeros,
323
+ int batch,
324
+ int heads,
325
+ int vec_row,
326
+ int height,
327
+ int width
328
+ ) {
329
+ int weight_total = batch * heads * height * width / 4;
330
+ int input_total = batch * heads * vec_row * height;
331
+ int out_total = batch * heads * vec_row * width;
332
+ int tid = threadIdx.x;
333
+ // h is index of height with step being BLOCKWIDTH
334
+ int h = BLOCKWIDTH * blockIdx.x;
335
+ // w is index of width with step being 1
336
+ int w = BLOCKWIDTH * blockIdx.y + tid;
337
+ if (w >= width && tid >= height) {
338
+ return;
339
+ }
340
+
341
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
342
+ int k;
343
+ scalar_t w_tmp;
344
+
345
+ float weight[BLOCKWIDTH];
346
+
347
+ for (int b = 0; b < batch; ++b){
348
+ for (int head = 0; head < heads; ++head){
349
+ int batch_shift = b * heads + head;
350
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
351
+ int i_w = (w / 4);
352
+ int w_bit = (w % 4) * 8;
353
+
354
+ int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
355
+ if (w_index >= weight_total || w >= width) {
356
+ weight[k] = 0;
357
+ } else {
358
+ scalar_t scale = scales[batch_shift * height + h + k];
359
+ scalar_t zero = zeros[batch_shift * height + h + k];
360
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
361
+ weight[k] = scale * (w_tmp - zero);
362
+ }
363
+ }
364
+
365
+ scalar_t res;
366
+ for (int vr = 0; vr < vec_row; ++vr){
367
+ res = 0;
368
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
369
+ if (vec_index < input_total) {
370
+ blockvec[tid] = vec[vec_index];
371
+ } else {
372
+ blockvec[tid] = 0;
373
+ }
374
+
375
+ __syncthreads();
376
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
377
+ // res is the dot product of BLOCKWIDTH elements (part of width)
378
+ res += weight[k] * blockvec[k];
379
+ }
380
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
381
+ int out_index = (batch_shift * vec_row + vr) * width + w;
382
+ if (out_index < out_total) {
383
+ atomicAdd(&mul[out_index], res);
384
+ }
385
+ __syncthreads();
386
+ }
387
+ }
388
+ }
389
+ }
390
+
391
+ void vecquant8matmul_batched_cuda(
392
+ torch::Tensor vec,
393
+ torch::Tensor mat,
394
+ torch::Tensor mul,
395
+ torch::Tensor scales,
396
+ torch::Tensor zeros
397
+ ) {
398
+ int batch = vec.size(0);
399
+ int heads = vec.size(1);
400
+ int vec_row = vec.size(2);
401
+ int vec_height = vec.size(3);
402
+ int height = mat.size(2);
403
+ int width = mat.size(3);
404
+ int zero_width = zeros.size(2);
405
+
406
+ dim3 blocks(
407
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
408
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
409
+ );
410
+ dim3 threads(BLOCKWIDTH);
411
+
412
+ AT_DISPATCH_FLOATING_TYPES(
413
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
414
+ VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
415
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
416
+ scales.data<scalar_t>(), zeros.data<int>(),
417
+ batch, heads, vec_row, vec_height, height, width, zero_width
418
+ );
419
+ })
420
+ );
421
+
422
+ }
423
+
424
+ template <typename scalar_t>
425
+ __global__ void VecQuant8BatchMatMulKernel(
426
+ const scalar_t* __restrict__ vec,
427
+ const int* __restrict__ mat,
428
+ scalar_t* __restrict__ mul,
429
+ const scalar_t* __restrict__ scales,
430
+ const int* __restrict__ zeros,
431
+ int batch,
432
+ int heads,
433
+ int vec_row,
434
+ int vec_height,
435
+ int height,
436
+ int width,
437
+ int zero_width
438
+ ) {
439
+ int weight_total = batch * heads * height * width;
440
+ int input_total = batch * heads * vec_row * vec_height;
441
+ int out_total = batch * heads * vec_row * width;
442
+ int tid = threadIdx.x;
443
+ // h is index of height with step being BLOCKHEIGHT8
444
+ int h = BLOCKHEIGHT8 * blockIdx.x;
445
+ // w is index of width with step being 1
446
+ int w = BLOCKWIDTH * blockIdx.y + tid;
447
+ if (w >= width && tid >= vec_height) {
448
+ return;
449
+ }
450
+
451
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
452
+ // i is index of mat of block first row
453
+ int i = width * h + w;
454
+ // if (i >= width * height) {
455
+ // return;
456
+ // }
457
+ int k;
458
+ scalar_t w_tmp;
459
+
460
+ int z_w = w / 4;
461
+ int z_mod = (w % 4) * 8;
462
+
463
+ float weight[BLOCKWIDTH];
464
+
465
+ for (int b = 0; b < batch; ++b){
466
+ for (int head = 0; head < heads; ++head){
467
+ int batch_shift = b * heads + head;
468
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
469
+ int k_w = (k / 4);
470
+ int k_bit = (k % 4) * 8;
471
+
472
+ int w_index = batch_shift * height * width + i + (k_w * width);
473
+ if (w_index >= weight_total || w >= width) {
474
+ weight[k] = 0;
475
+ } else {
476
+ scalar_t scale = scales[batch_shift * width + w];
477
+ scalar_t zero;
478
+ if (zero_width == width) {
479
+ zero = zeros[batch_shift * width + w];
480
+ } else {
481
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
482
+ }
483
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
484
+ weight[k] = scale * (w_tmp - zero);
485
+ }
486
+ }
487
+
488
+ scalar_t res;
489
+ for (int vr = 0; vr < vec_row; ++vr){
490
+ res = 0;
491
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
492
+ if (vec_index < input_total) {
493
+ blockvec[tid] = vec[vec_index];
494
+ } else {
495
+ blockvec[tid] = 0;
496
+ }
497
+
498
+ __syncthreads();
499
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
500
+ // res is the dot product of BLOCKWIDTH elements (part of width)
501
+ res += weight[k] * blockvec[k];
502
+ }
503
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
504
+ int out_index = (batch_shift * vec_row + vr) * width + w;
505
+ if (out_index < out_total) {
506
+ atomicAdd(&mul[out_index], res);
507
+ }
508
+ __syncthreads();
509
+ }
510
+ }
511
+ }
512
+ }
513
+
514
+
515
+ void vecquant8matmul_cuda(
516
+ torch::Tensor vec,
517
+ torch::Tensor mat,
518
+ torch::Tensor mul,
519
+ torch::Tensor scales,
520
+ torch::Tensor zeros,
521
+ torch::Tensor g_idx
522
+ ) {
523
+ int batch = vec.size(0);
524
+ int vec_height = vec.size(1);
525
+ int height = mat.size(0);
526
+ int width = mat.size(1);
527
+ int zero_width = zeros.size(1);
528
+
529
+ dim3 blocks(
530
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
531
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
532
+ );
533
+ dim3 threads(BLOCKWIDTH);
534
+
535
+ AT_DISPATCH_FLOATING_TYPES(
536
+ vec.type(), "vecquant8matmul_cuda", ([&] {
537
+ VecQuant8MatMulKernel<<<blocks, threads>>>(
538
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
539
+ scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
540
+ batch, vec_height, height, width, zero_width
541
+ );
542
+ })
543
+ );
544
+ }
545
+
546
+ template <typename scalar_t>
547
+ __global__ void VecQuant8MatMulKernel(
548
+ const scalar_t* __restrict__ vec,
549
+ const int* __restrict__ mat,
550
+ scalar_t* __restrict__ mul,
551
+ const scalar_t* __restrict__ scales,
552
+ const int* __restrict__ zeros,
553
+ const int* __restrict__ g_idx,
554
+ int batch,
555
+ int vec_height,
556
+ int height,
557
+ int width,
558
+ int zero_width
559
+ ) {
560
+ int h = BLOCKHEIGHT8 * blockIdx.x;
561
+ int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
562
+
563
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
564
+ int i = width * h + w;
565
+ int g_h = h * 4;
566
+ int k;
567
+ unsigned int g;
568
+ scalar_t w_tmp;
569
+
570
+ int z_w = w / 4;
571
+ int z_mod = (w % 4) * 8;
572
+
573
+ float weight[BLOCKWIDTH];
574
+
575
+ for (k = 0; k < BLOCKWIDTH; ++k){
576
+ int k_w = (k / 4);
577
+ int k_bit = (k % 4) * 8;
578
+
579
+ g = as_int(g_idx[g_h + k]);
580
+ scalar_t scale = scales[g * width + w];
581
+ scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
582
+
583
+ w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
584
+
585
+ weight[k] = scale * (w_tmp - zero);
586
+ }
587
+
588
+
589
+ scalar_t res;
590
+ for (int b = 0; b < batch; ++b){
591
+ res = 0;
592
+ blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
593
+ __syncthreads();
594
+ for (k = 0; k < BLOCKWIDTH; ++k){
595
+ res += weight[k] * blockvec[k];
596
+ }
597
+ atomicAdd(&mul[b * width + w], res);
598
+ __syncthreads();
599
+ }
600
+ }
601
+
602
+
603
+
604
+ void vecquant4matmul_batched_cuda(
605
+ torch::Tensor vec,
606
+ torch::Tensor mat,
607
+ torch::Tensor mul,
608
+ torch::Tensor scales,
609
+ torch::Tensor zeros
610
+ ) {
611
+ int batch = vec.size(0);
612
+ int heads = vec.size(1);
613
+ int vec_row = vec.size(2);
614
+ int vec_height = vec.size(3);
615
+ int height = mat.size(2);
616
+ int width = mat.size(3);
617
+ int zero_width = zeros.size(2);
618
+
619
+ dim3 blocks(
620
+ (height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
621
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
622
+ );
623
+ dim3 threads(BLOCKWIDTH);
624
+
625
+ AT_DISPATCH_FLOATING_TYPES(
626
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
627
+ VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
628
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
629
+ scales.data<scalar_t>(), zeros.data<int>(),
630
+ batch, heads, vec_row, vec_height, height, width, zero_width
631
+ );
632
+ })
633
+ );
634
+
635
+ }
636
+
637
+ template <typename scalar_t>
638
+ __global__ void VecQuant4BatchMatMulKernel(
639
+ const scalar_t* __restrict__ vec,
640
+ const int* __restrict__ mat,
641
+ scalar_t* __restrict__ mul,
642
+ const scalar_t* __restrict__ scales,
643
+ const int* __restrict__ zeros,
644
+ int batch,
645
+ int heads,
646
+ int vec_row,
647
+ int vec_height,
648
+ int height,
649
+ int width,
650
+ int zero_width
651
+ ) {
652
+ int weight_total = batch * heads * height * width;
653
+ int input_total = batch * heads * vec_row * vec_height;
654
+ int out_total = batch * heads * vec_row * width;
655
+ int tid = threadIdx.x;
656
+ // h is index of height with step being BLOCKHEIGHT4
657
+ int h = BLOCKHEIGHT4 * blockIdx.x;
658
+ // w is index of width with step being 1
659
+ int w = BLOCKWIDTH * blockIdx.y + tid;
660
+ if (w >= width && tid >= vec_height) {
661
+ return;
662
+ }
663
+
664
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
665
+ // i is index of mat of block first row
666
+ int i = width * h + w;
667
+ int k;
668
+ scalar_t w_tmp;
669
+
670
+ int z_w = w / 8;
671
+ int z_mod = (w % 8) * 4;
672
+
673
+ float weight[BLOCKWIDTH];
674
+
675
+ for (int b = 0; b < batch; ++b){
676
+ for (int head = 0; head < heads; ++head){
677
+ int batch_shift = b * heads + head;
678
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
679
+ int k_w = (k / 8);
680
+ int k_bit = (k % 8) * 4;
681
+
682
+ int w_index = batch_shift * height * width + i + (k_w * width);
683
+ if (w_index >= weight_total || w >= width) {
684
+ weight[k] = 0;
685
+ } else {
686
+ scalar_t scale = scales[batch_shift * width + w];
687
+ scalar_t zero;
688
+ if (zero_width == width) {
689
+ zero = zeros[batch_shift * width + w];
690
+ } else {
691
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
692
+ }
693
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
694
+ weight[k] = scale * (w_tmp - zero);
695
+ }
696
+ }
697
+
698
+ scalar_t res;
699
+ for (int vr = 0; vr < vec_row; ++vr){
700
+ res = 0;
701
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
702
+ if (vec_index < input_total) {
703
+ blockvec[tid] = vec[vec_index];
704
+ } else {
705
+ blockvec[tid] = 0;
706
+ }
707
+
708
+ __syncthreads();
709
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
710
+ // res is the dot product of BLOCKWIDTH elements (part of width)
711
+ res += weight[k] * blockvec[k];
712
+ }
713
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
714
+ int out_index = (batch_shift * vec_row + vr) * width + w;
715
+ if (out_index < out_total) {
716
+ atomicAdd(&mul[out_index], res);
717
+ }
718
+ __syncthreads();
719
+ }
720
+ }
721
+ }
722
+ }
723
+
724
+
725
+
726
+ void vecquant4matmul_batched_column_compression_cuda(
727
+ torch::Tensor vec,
728
+ torch::Tensor mat,
729
+ torch::Tensor mul,
730
+ torch::Tensor scales,
731
+ torch::Tensor zeros
732
+ ) {
733
+ int batch = vec.size(0);
734
+ int heads = vec.size(1);
735
+ int vec_row = vec.size(2);
736
+ int height = vec.size(3);
737
+ int width = mat.size(3) * 8;
738
+
739
+ dim3 blocks(
740
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
741
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
742
+ );
743
+ dim3 threads(BLOCKWIDTH);
744
+
745
+ AT_DISPATCH_FLOATING_TYPES(
746
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
747
+ VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
748
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
749
+ scales.data<scalar_t>(), zeros.data<int>(),
750
+ batch, heads, vec_row, height, width
751
+ );
752
+ })
753
+ );
754
+
755
+ }
756
+
757
+ template <typename scalar_t>
758
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
759
+ const scalar_t* __restrict__ vec,
760
+ const int* __restrict__ mat,
761
+ scalar_t* __restrict__ mul,
762
+ const scalar_t* __restrict__ scales,
763
+ const int* __restrict__ zeros,
764
+ int batch,
765
+ int heads,
766
+ int vec_row,
767
+ int height,
768
+ int width
769
+ ) {
770
+ int weight_total = batch * heads * height * width / 8;
771
+ int input_total = batch * heads * vec_row * height;
772
+ int out_total = batch * heads * vec_row * width;
773
+ int tid = threadIdx.x;
774
+ // h is index of height with step being BLOCKWIDTH
775
+ int h = BLOCKWIDTH * blockIdx.x;
776
+ // w is index of width with step being 1
777
+ int w = BLOCKWIDTH * blockIdx.y + tid;
778
+ if (w >= width && tid >= height) {
779
+ return;
780
+ }
781
+
782
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
783
+ int k;
784
+ scalar_t w_tmp;
785
+
786
+ float weight[BLOCKWIDTH];
787
+
788
+ for (int b = 0; b < batch; ++b){
789
+ for (int head = 0; head < heads; ++head){
790
+ int batch_shift = b * heads + head;
791
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
792
+ int i_w = (w / 8);
793
+ int w_bit = (w % 8) * 4;
794
+
795
+ int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
796
+ if (w_index >= weight_total || w >= width) {
797
+ weight[k] = 0;
798
+ } else {
799
+ scalar_t scale = scales[batch_shift * height + h + k];
800
+ scalar_t zero = zeros[batch_shift * height + h + k];
801
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
802
+ weight[k] = scale * (w_tmp - zero);
803
+ }
804
+ }
805
+
806
+ scalar_t res;
807
+ for (int vr = 0; vr < vec_row; ++vr){
808
+ res = 0;
809
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
810
+ if (vec_index < input_total) {
811
+ blockvec[tid] = vec[vec_index];
812
+ } else {
813
+ blockvec[tid] = 0;
814
+ }
815
+
816
+ __syncthreads();
817
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
818
+ // res is the dot product of BLOCKWIDTH elements (part of width)
819
+ res += weight[k] * blockvec[k];
820
+ }
821
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
822
+ int out_index = (batch_shift * vec_row + vr) * width + w;
823
+ if (out_index < out_total) {
824
+ atomicAdd(&mul[out_index], res);
825
+ }
826
+ __syncthreads();
827
+ }
828
+ }
829
+ }
830
+ }
831
+
832
+
833
+ void vecquant8matmul_batched_old_cuda(
834
+ torch::Tensor vec,
835
+ torch::Tensor mat,
836
+ torch::Tensor mul,
837
+ torch::Tensor scales,
838
+ torch::Tensor zeros
839
+ ) {
840
+ int batch = vec.size(0);
841
+ int heads = vec.size(1);
842
+ int vec_row = vec.size(2);
843
+ int vec_height = vec.size(3);
844
+ int height = mat.size(2);
845
+ int width = mat.size(3);
846
+ int zero_width = zeros.size(2);
847
+
848
+ dim3 blocks(
849
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
850
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
851
+ );
852
+ dim3 threads(BLOCKWIDTH);
853
+
854
+ AT_DISPATCH_FLOATING_TYPES(
855
+ vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
856
+ VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
857
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
858
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
859
+ batch, heads, vec_row, vec_height, height, width, zero_width
860
+ );
861
+ })
862
+ );
863
+ }
864
+
865
+
866
+ template <typename scalar_t>
867
+ __global__ void VecQuant8BatchMatMulKernel_old(
868
+ const scalar_t* __restrict__ vec,
869
+ const uint8_t* __restrict__ mat,
870
+ scalar_t* __restrict__ mul,
871
+ const scalar_t* __restrict__ scales,
872
+ const scalar_t* __restrict__ zeros,
873
+ int batch,
874
+ int heads,
875
+ int vec_row,
876
+ int vec_height,
877
+ int height,
878
+ int width,
879
+ int zero_width
880
+ ) {
881
+ int weight_total = batch * heads * height * width;
882
+ int input_total = batch * heads * vec_row * vec_height;
883
+ int out_total = batch * heads * vec_row * width;
884
+ int tid = threadIdx.x;
885
+ // h is index of height with step being BLOCKHEIGHT8
886
+ int h = BLOCKWIDTH * blockIdx.x;
887
+ // w is index of width with step being 1
888
+ int w = BLOCKWIDTH * blockIdx.y + tid;
889
+ if (w >= width && tid >= vec_height) {
890
+ return;
891
+ }
892
+
893
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
894
+ // i is index of mat of block first row
895
+ int i = width * h + w;
896
+ int k;
897
+ scalar_t w_tmp;
898
+
899
+ float weight[BLOCKWIDTH];
900
+ for (int b = 0; b < batch; ++b){
901
+ for (int head = 0; head < heads; ++head){
902
+ int batch_shift = b * heads + head;
903
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
904
+ int k_w = k;
905
+ int w_index = batch_shift * height * width + i + (k_w * width);
906
+ if (w_index >= weight_total || w >= width) {
907
+ weight[k] = 0;
908
+ } else {
909
+ scalar_t scale = scales[batch_shift * width + w];
910
+ scalar_t zero = zeros[batch_shift * width + w];
911
+ w_tmp = as_unsigned(mat[w_index]);
912
+ weight[k] = scale * (w_tmp - zero);
913
+ }
914
+ }
915
+
916
+ scalar_t res;
917
+ for (int vr = 0; vr < vec_row; ++vr){
918
+ res = 0;
919
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
920
+ if (vec_index < input_total) {
921
+ blockvec[tid] = vec[vec_index];
922
+ } else {
923
+ blockvec[tid] = 0;
924
+ }
925
+
926
+ __syncthreads();
927
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
928
+ // res is the dot product of BLOCKWIDTH elements (part of width)
929
+ res += weight[k] * blockvec[k];
930
+ }
931
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
932
+ int out_index = (batch_shift * vec_row + vr) * width + w;
933
+ if (out_index < out_total) {
934
+ atomicAdd(&mul[out_index], res);
935
+ }
936
+ __syncthreads();
937
+ }
938
+ }
939
+ }
940
+ }
941
+
942
+
943
+
944
+ void vecquant8matmul_batched_faster_cuda(
945
+ torch::Tensor vec,
946
+ torch::Tensor mat,
947
+ torch::Tensor mul,
948
+ torch::Tensor scales,
949
+ torch::Tensor zeros
950
+ ) {
951
+ int batch = vec.size(0);
952
+ int heads = vec.size(1);
953
+ int vec_row = vec.size(2);
954
+ int vec_height = vec.size(3);
955
+ int height = mat.size(2);
956
+ int width = mat.size(3);
957
+ int zero_width = zeros.size(2);
958
+
959
+ dim3 blocks(
960
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
961
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
962
+ );
963
+ dim3 threads(BLOCKWIDTH);
964
+
965
+ VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
966
+ (half*) vec.data_ptr(),
967
+ (uint8_t*) mat.data_ptr(),
968
+ (half*) mul.data_ptr(),
969
+ (half*) scales.data_ptr(),
970
+ (half*) zeros.data_ptr(),
971
+ batch, heads, vec_row, vec_height, height, width, zero_width
972
+ );
973
+ }
974
+
975
+
976
+
977
+ __global__ void VecQuant8BatchMatMulKernel_faster(
978
+ const half* __restrict__ vec,
979
+ const uint8_t* __restrict__ mat,
980
+ half* __restrict__ mul,
981
+ const half* __restrict__ scales,
982
+ const half* __restrict__ zeros,
983
+ int batch,
984
+ int heads,
985
+ int vec_row,
986
+ int vec_height,
987
+ int height,
988
+ int width,
989
+ int zero_width
990
+ ) {
991
+ //int weight_total = batch * heads * height * width;
992
+ int input_total = batch * heads * vec_row * vec_height;
993
+ int out_total = batch * heads * vec_row * width;
994
+ int tid = threadIdx.x;
995
+ int h = BLOCKWIDTH * blockIdx.x;
996
+ int w = BLOCKWIDTH * blockIdx.y + tid;
997
+ if (w >= width && tid >= height) {
998
+ return;
999
+ }
1000
+
1001
+ __shared__ float blockvec[BLOCKWIDTH];
1002
+ int i = width * h + w;
1003
+ int k;
1004
+ float w_tmp;
1005
+
1006
+ float weight[BLOCKWIDTH];
1007
+ for (int b = 0; b < batch; ++b){
1008
+ for (int head = 0; head < heads; ++head){
1009
+ int batch_shift = b * heads + head;
1010
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1011
+ int k_w = k;
1012
+ int w_index = batch_shift * height * width + i + (k_w * width);
1013
+ float scale = __half2float(scales[batch_shift * width + w]);
1014
+ float zero = __half2float(zeros[batch_shift * width + w]);
1015
+ w_tmp = as_unsigned(mat[w_index]);
1016
+ weight[k] = scale *(w_tmp-zero);
1017
+ }
1018
+
1019
+ float res;
1020
+ for (int vr = 0; vr < vec_row; ++vr){
1021
+ res = 0;
1022
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1023
+ if (vec_index < input_total) {
1024
+ blockvec[tid] = __half2float(vec[vec_index]);
1025
+ } else {
1026
+ blockvec[tid] = 0;
1027
+ }
1028
+ __syncthreads();
1029
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1030
+ float temp_res = weight[k]*blockvec[k];
1031
+ res += temp_res;
1032
+ }
1033
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1034
+ if (out_index < out_total) {
1035
+ atomicAdd(&mul[out_index], __float2half(res));
1036
+ }
1037
+ __syncthreads();
1038
+ }
1039
+ }
1040
+ }
1041
+ }
1042
+
1043
+
1044
+
1045
+
1046
+ void vecquant8matmul_batched_column_compression_faster_cuda(
1047
+ torch::Tensor vec,
1048
+ torch::Tensor mat,
1049
+ torch::Tensor mul,
1050
+ torch::Tensor scales,
1051
+ torch::Tensor zeros
1052
+ ) {
1053
+ int batch = vec.size(0);
1054
+ int heads = vec.size(1);
1055
+ int vec_row = vec.size(2);
1056
+ int height = vec.size(3);
1057
+ int width = mat.size(3);
1058
+
1059
+ dim3 blocks(
1060
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1061
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1062
+ );
1063
+ dim3 threads(BLOCKWIDTH);
1064
+
1065
+ VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
1066
+ (half*) vec.data_ptr(),
1067
+ (uint8_t*) mat.data_ptr(),
1068
+ (half*) mul.data_ptr(),
1069
+ (half*) scales.data_ptr(),
1070
+ (half*) zeros.data_ptr(),
1071
+ batch, heads, vec_row, height, width
1072
+ );
1073
+
1074
+ }
1075
+
1076
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
1077
+ const half* __restrict__ vec,
1078
+ const uint8_t* __restrict__ mat,
1079
+ half* __restrict__ mul,
1080
+ const half* __restrict__ scales,
1081
+ const half* __restrict__ zeros,
1082
+ int batch,
1083
+ int heads,
1084
+ int vec_row,
1085
+ int height,
1086
+ int width
1087
+ ) {
1088
+ //int weight_total = batch * heads * height * width;
1089
+ int input_total = batch * heads * vec_row * height;
1090
+ int out_total = batch * heads * vec_row * width;
1091
+ int tid = threadIdx.x;
1092
+ int h = BLOCKWIDTH * blockIdx.x;
1093
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1094
+ if (w >= width && tid >= height) {
1095
+ return;
1096
+ }
1097
+
1098
+ __shared__ float blockvec[BLOCKWIDTH];
1099
+ int k;
1100
+ float w_tmp;
1101
+ float weight[BLOCKWIDTH];
1102
+
1103
+ for (int b = 0; b < batch; ++b){
1104
+ for (int head = 0; head < heads; ++head){
1105
+ int batch_shift = b * heads + head;
1106
+ for (k = 0; k < BLOCKWIDTH; ++k){
1107
+ int w_index = (batch_shift * height + h + k) * width + w;
1108
+ float scale = __half2float(scales[batch_shift * height + h + k]);
1109
+ float zero = __half2float(zeros[batch_shift * height + h + k]);
1110
+ w_tmp = mat[w_index];
1111
+ weight[k] = scale * (w_tmp-zero);
1112
+ }
1113
+
1114
+ float res;
1115
+ for (int vr = 0; vr < vec_row; ++vr){
1116
+ res = 0;
1117
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1118
+ if (vec_index < input_total) {
1119
+ blockvec[tid] = __half2float(vec[vec_index]);
1120
+ } else {
1121
+ blockvec[tid] = 0;
1122
+ }
1123
+ __syncthreads();
1124
+ for (k = 0; k < BLOCKWIDTH; ++k){
1125
+ res += weight[k]*blockvec[k];
1126
+ }
1127
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1128
+ if (out_index < out_total) {
1129
+ atomicAdd(&mul[out_index], __float2half(res));
1130
+ }
1131
+ __syncthreads();
1132
+ }
1133
+ }
1134
+ }
1135
+ }
1136
+
1137
+
1138
+
1139
+ void vecquant8matmul_batched_column_compression_old_cuda(
1140
+ torch::Tensor vec,
1141
+ torch::Tensor mat,
1142
+ torch::Tensor mul,
1143
+ torch::Tensor scales,
1144
+ torch::Tensor zeros
1145
+ ) {
1146
+ int batch = vec.size(0);
1147
+ int heads = vec.size(1);
1148
+ int vec_row = vec.size(2);
1149
+ int height = vec.size(3);
1150
+ int width = mat.size(3);
1151
+
1152
+ dim3 blocks(
1153
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1154
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1155
+ );
1156
+ dim3 threads(BLOCKWIDTH);
1157
+
1158
+ AT_DISPATCH_FLOATING_TYPES(
1159
+ vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
1160
+ VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1161
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1162
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1163
+ batch, heads, vec_row, height, width
1164
+ );
1165
+ })
1166
+ );
1167
+
1168
+ }
1169
+
1170
+ template <typename scalar_t>
1171
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
1172
+ const scalar_t* __restrict__ vec,
1173
+ const uint8_t* __restrict__ mat,
1174
+ scalar_t* __restrict__ mul,
1175
+ const scalar_t* __restrict__ scales,
1176
+ const scalar_t* __restrict__ zeros,
1177
+ int batch,
1178
+ int heads,
1179
+ int vec_row,
1180
+ int height,
1181
+ int width
1182
+ ) {
1183
+ int weight_total = batch * heads * height * width;
1184
+ int input_total = batch * heads * vec_row * height;
1185
+ int out_total = batch * heads * vec_row * width;
1186
+ int tid = threadIdx.x;
1187
+ // h is index of height with step being BLOCKWIDTH
1188
+ int h = BLOCKWIDTH * blockIdx.x;
1189
+ // w is index of width with step being 1
1190
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1191
+ if (w >= width && tid >= height) {
1192
+ return;
1193
+ }
1194
+
1195
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1196
+ int k;
1197
+ scalar_t w_tmp;
1198
+
1199
+ float weight[BLOCKWIDTH];
1200
+
1201
+ for (int b = 0; b < batch; ++b){
1202
+ for (int head = 0; head < heads; ++head){
1203
+ int batch_shift = b * heads + head;
1204
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1205
+ int w_index = (batch_shift * height + h + k) * width + w;
1206
+ if (w_index >= weight_total || w >= width) {
1207
+ weight[k] = 0;
1208
+ } else {
1209
+ scalar_t scale = scales[batch_shift * height + h + k];
1210
+ scalar_t zero = zeros[batch_shift * height + h + k];
1211
+ w_tmp = mat[w_index];
1212
+ weight[k] = scale * (w_tmp - zero);
1213
+ }
1214
+ }
1215
+
1216
+ scalar_t res;
1217
+ for (int vr = 0; vr < vec_row; ++vr){
1218
+ res = 0;
1219
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1220
+ if (vec_index < input_total) {
1221
+ blockvec[tid] = vec[vec_index];
1222
+ } else {
1223
+ blockvec[tid] = 0;
1224
+ }
1225
+
1226
+ __syncthreads();
1227
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1228
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1229
+ res += weight[k] * blockvec[k];
1230
+ }
1231
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1232
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1233
+ if (out_index < out_total) {
1234
+ atomicAdd(&mul[out_index], res);
1235
+ }
1236
+ __syncthreads();
1237
+ }
1238
+ }
1239
+ }
1240
+ }
1241
+
1242
+
1243
+ void vecquant4matmul_batched_old_cuda(
1244
+ torch::Tensor vec,
1245
+ torch::Tensor mat,
1246
+ torch::Tensor mul,
1247
+ torch::Tensor scales,
1248
+ torch::Tensor zeros
1249
+ ) {
1250
+ int batch = vec.size(0);
1251
+ int heads = vec.size(1);
1252
+ int vec_row = vec.size(2);
1253
+ int vec_height = vec.size(3);
1254
+ int height = mat.size(2);
1255
+ int width = mat.size(3);
1256
+ int zero_width = zeros.size(2);
1257
+
1258
+ dim3 blocks(
1259
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1260
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1261
+ );
1262
+ dim3 threads(BLOCKWIDTH);
1263
+
1264
+ AT_DISPATCH_FLOATING_TYPES(
1265
+ vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
1266
+ VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
1267
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1268
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1269
+ batch, heads, vec_row, vec_height, height, width, zero_width
1270
+ );
1271
+ })
1272
+ );
1273
+
1274
+ }
1275
+
1276
+ template <typename scalar_t>
1277
+ __global__ void VecQuant4BatchMatMulKernel_old(
1278
+ const scalar_t* __restrict__ vec,
1279
+ const uint8_t* __restrict__ mat,
1280
+ scalar_t* __restrict__ mul,
1281
+ const scalar_t* __restrict__ scales,
1282
+ const scalar_t* __restrict__ zeros,
1283
+ int batch,
1284
+ int heads,
1285
+ int vec_row,
1286
+ int vec_height,
1287
+ int height,
1288
+ int width,
1289
+ int zero_width
1290
+ ) {
1291
+ int weight_total = batch * heads * height * width;
1292
+ int input_total = batch * heads * vec_row * vec_height;
1293
+ int out_total = batch * heads * vec_row * width;
1294
+ int tid = threadIdx.x;
1295
+ // h is index of height with step being BLOCKHEIGHT_OLD4
1296
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1297
+ // w is index of width with step being 1
1298
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1299
+ if (w >= width && tid >= vec_height) {
1300
+ return;
1301
+ }
1302
+
1303
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1304
+ // i is index of mat of block first row
1305
+ int i = width * h + w;
1306
+ int k;
1307
+ scalar_t w_tmp;
1308
+
1309
+ float weight[BLOCKWIDTH];
1310
+ for (int b = 0; b < batch; ++b){
1311
+ for (int head = 0; head < heads; ++head){
1312
+ int batch_shift = b * heads + head;
1313
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1314
+ int k_w = (k / 2);
1315
+ int k_bit = (k % 2) * 4;
1316
+ int w_index = batch_shift * height * width + i + (k_w * width);
1317
+ if (w_index >= weight_total || w >= width) {
1318
+ weight[k] = 0;
1319
+ } else {
1320
+ scalar_t scale = scales[batch_shift * width + w];
1321
+ scalar_t zero = zeros[batch_shift * width + w];
1322
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1323
+ weight[k] = scale * (w_tmp - zero);
1324
+ }
1325
+ }
1326
+
1327
+ scalar_t res;
1328
+ for (int vr = 0; vr < vec_row; ++vr){
1329
+ res = 0;
1330
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1331
+ if (vec_index < input_total) {
1332
+ blockvec[tid] = vec[vec_index];
1333
+ } else {
1334
+ blockvec[tid] = 0;
1335
+ }
1336
+
1337
+ __syncthreads();
1338
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1339
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1340
+ res += weight[k] * blockvec[k];
1341
+ }
1342
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1343
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1344
+ if (out_index < out_total) {
1345
+ atomicAdd(&mul[out_index], res);
1346
+ }
1347
+ __syncthreads();
1348
+ }
1349
+ }
1350
+ }
1351
+ }
1352
+
1353
+
1354
+
1355
+
1356
+
1357
+ void vecquant4matmul_batched_column_compression_old_cuda(
1358
+ torch::Tensor vec,
1359
+ torch::Tensor mat,
1360
+ torch::Tensor mul,
1361
+ torch::Tensor scales,
1362
+ torch::Tensor zeros
1363
+ ) {
1364
+ int batch = vec.size(0);
1365
+ int heads = vec.size(1);
1366
+ int vec_row = vec.size(2);
1367
+ int height = vec.size(3);
1368
+ int width = mat.size(3);
1369
+
1370
+ dim3 blocks(
1371
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1372
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1373
+ );
1374
+ dim3 threads(BLOCKWIDTH);
1375
+
1376
+ AT_DISPATCH_FLOATING_TYPES(
1377
+ vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
1378
+ VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1379
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1380
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1381
+ batch, heads, vec_row, height, width
1382
+ );
1383
+ })
1384
+ );
1385
+
1386
+ }
1387
+
1388
+ template <typename scalar_t>
1389
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
1390
+ const scalar_t* __restrict__ vec,
1391
+ const uint8_t* __restrict__ mat,
1392
+ scalar_t* __restrict__ mul,
1393
+ const scalar_t* __restrict__ scales,
1394
+ const scalar_t* __restrict__ zeros,
1395
+ int batch,
1396
+ int heads,
1397
+ int vec_row,
1398
+ int height,
1399
+ int width
1400
+ ) {
1401
+ int weight_total = batch * heads * height * width;
1402
+ int input_total = batch * heads * vec_row * height;
1403
+ int out_total = batch * heads * vec_row * width;
1404
+ int tid = threadIdx.x;
1405
+ // h is index of height with step being BLOCKWIDTH
1406
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1407
+ // w is index of width with step being 1
1408
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1409
+ if (w >= width && tid >= height) {
1410
+ return;
1411
+ }
1412
+
1413
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1414
+ int k;
1415
+ scalar_t w_tmp;
1416
+
1417
+ float weight[BLOCKWIDTH];
1418
+
1419
+ for (int b = 0; b < batch; ++b){
1420
+ for (int head = 0; head < heads; ++head){
1421
+ int batch_shift = b * heads + head;
1422
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1423
+ int k_w = (k / 2);
1424
+ int k_bit = (k % 2) * 4;
1425
+ int w_index = (batch_shift * height + h + k) * width + k_w;
1426
+ if (w_index >= weight_total || w >= width) {
1427
+ weight[k] = 0;
1428
+ } else {
1429
+ scalar_t scale = scales[batch_shift * height + h + k];
1430
+ scalar_t zero = zeros[batch_shift * height + h + k];
1431
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1432
+ weight[k] = scale * (w_tmp - zero);
1433
+ }
1434
+ }
1435
+
1436
+ scalar_t res;
1437
+ for (int vr = 0; vr < vec_row; ++vr){
1438
+ res = 0;
1439
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1440
+ if (vec_index < input_total) {
1441
+ blockvec[tid] = vec[vec_index];
1442
+ } else {
1443
+ blockvec[tid] = 0;
1444
+ }
1445
+
1446
+ __syncthreads();
1447
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1448
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1449
+ res += weight[k] * blockvec[k];
1450
+ }
1451
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1452
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1453
+ if (out_index < out_total) {
1454
+ atomicAdd(&mul[out_index], res);
1455
+ }
1456
+ __syncthreads();
1457
+ }
1458
+ }
1459
+ }
1460
+ }
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+ void vecquant8matmul_batched_faster_old_cuda(
1467
+ torch::Tensor vec,
1468
+ torch::Tensor mat,
1469
+ torch::Tensor mul,
1470
+ torch::Tensor scales,
1471
+ torch::Tensor zeros
1472
+ ) {
1473
+ int batch = vec.size(0);
1474
+ int heads = vec.size(1);
1475
+ int vec_row = vec.size(2);
1476
+ int vec_height = vec.size(3);
1477
+ int height = mat.size(2);
1478
+ int width = mat.size(3);
1479
+
1480
+ dim3 blocks(
1481
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1482
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1483
+ );
1484
+ dim3 threads(BLOCKWIDTH);
1485
+
1486
+ VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
1487
+ (half*) vec.data_ptr(),
1488
+ (uint8_t*) mat.data_ptr(),
1489
+ (half*) mul.data_ptr(),
1490
+ (half*) scales.data_ptr(),
1491
+ (half*) zeros.data_ptr(),
1492
+ batch, heads, vec_row, vec_height, height, width
1493
+ );
1494
+ }
1495
+
1496
+
1497
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
1498
+ const half* __restrict__ vec,
1499
+ const uint8_t* __restrict__ mat,
1500
+ half* __restrict__ mul,
1501
+ const half* __restrict__ scales,
1502
+ const half* __restrict__ zeros,
1503
+ int batch,
1504
+ int heads,
1505
+ int vec_row,
1506
+ int vec_height,
1507
+ int height,
1508
+ int width
1509
+ ) {
1510
+ int weight_total = batch * heads * height * width;
1511
+ int input_total = batch * heads * vec_row * vec_height;
1512
+ int out_total = batch * heads * vec_row * width;
1513
+ int tid = threadIdx.x;
1514
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1515
+
1516
+ int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
1517
+ int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
1518
+ /*
1519
+ if (w >= width && tid >= vec_height) {
1520
+ return;
1521
+ }
1522
+ */
1523
+ __shared__ half blockvec[BLOCKWIDTH]; //256
1524
+ int i = width * h + w;
1525
+ int k;
1526
+
1527
+ half w_tmp1 = __float2half(0);
1528
+ half w_tmp2 = __float2half(0);
1529
+
1530
+ half2 weight[BLOCKWIDTH_half];
1531
+ for (int b = 0; b < batch; ++b){
1532
+ for (int head = 0; head < heads; ++head){
1533
+ int batch_shift = b * heads + head;
1534
+ //int zero_index = batch_shift;
1535
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1536
+ int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
1537
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1538
+ int zero_index = batch_shift * width + w; // [batch,head, w]
1539
+ if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
1540
+ weight[k] = __float2half2_rn(0);
1541
+ } else {
1542
+ float zero_f=__half2float(zeros[zero_index]);
1543
+ float scale_f= __half2float(scales[zero_index]);
1544
+ if (w_index2 >= weight_total){
1545
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
1546
+ w_tmp2 = __float2half(0);
1547
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1548
+ //printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1549
+ }else{
1550
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1551
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1552
+
1553
+ //weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
1554
+ weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1555
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1556
+ }
1557
+ }
1558
+ }
1559
+
1560
+
1561
+ for (int vr = 0; vr < vec_row; ++vr){
1562
+ float res=0;
1563
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1564
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1565
+ if (vec_index < input_total) {
1566
+ //blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
1567
+ blockvec[tid] = vec[vec_index];
1568
+ //printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
1569
+ } else {
1570
+ blockvec[tid] = __float2half(0);
1571
+ }
1572
+ __syncthreads();
1573
+ if (out_index < out_total) {
1574
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1575
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1576
+ res += __low2float(res2) + __high2float(res2);
1577
+ }
1578
+ atomicAdd(&mul[out_index], __float2half(res));
1579
+ }
1580
+ __syncthreads();
1581
+ }
1582
+ }
1583
+ }
1584
+ }
1585
+
1586
+
1587
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
1588
+ torch::Tensor vec, // [batch,heads, seq_q, seq_v]
1589
+ torch::Tensor mat, // [batch,heads, seq_v, head_dim]
1590
+ torch::Tensor mul, // [batch,heads, seq_q,head_dim]
1591
+ torch::Tensor scales, // [batch,heads, head_dim]
1592
+ torch::Tensor zeros
1593
+ ) {
1594
+ int batch = vec.size(0);
1595
+ int heads = vec.size(1);
1596
+ int vec_row = vec.size(2); //ql
1597
+ int height = mat.size(2); //vl
1598
+ int width = mat.size(3); //head_dim
1599
+
1600
+ dim3 blocks(
1601
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1602
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1603
+ );
1604
+ dim3 threads(BLOCKWIDTH);
1605
+
1606
+ VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
1607
+ (half*) vec.data_ptr(),
1608
+ (uint8_t*) mat.data_ptr(),
1609
+ (half*) mul.data_ptr(),
1610
+ (half*) scales.data_ptr(),
1611
+ (half*) zeros.data_ptr(),
1612
+ batch, heads, vec_row, height, width
1613
+ );
1614
+
1615
+ }
1616
+
1617
+
1618
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
1619
+ const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
1620
+ const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
1621
+ half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
1622
+ const half* __restrict__ scales, // [batch,heads, seq_v]
1623
+ const half* __restrict__ zeros,
1624
+ int batch,
1625
+ int heads,
1626
+ int vec_row, //seq_q
1627
+ int height, //seq_v
1628
+ int width //head_dim
1629
+ ) {
1630
+ int weight_total = batch * heads * height * width;
1631
+ int input_total = batch * heads * vec_row * height;
1632
+ int out_total = batch * heads * vec_row * width;
1633
+ int tid = threadIdx.x;
1634
+ int h = BLOCKWIDTH * blockIdx.x; // vl
1635
+ int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
1636
+ if (w >= width && tid >= height) {
1637
+ return;
1638
+ }
1639
+ __shared__ half blockvec[BLOCKWIDTH];
1640
+ int k;
1641
+ half w_tmp1 = __float2half(0);
1642
+ half w_tmp2 = __float2half(0);
1643
+ int i = width * h + w;
1644
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1645
+ half2 weight[BLOCKWIDTH_half];
1646
+
1647
+ for (int b = 0; b < batch; ++b){
1648
+ for (int head = 0; head < heads; ++head){
1649
+ int batch_shift = b * heads + head;
1650
+ //int zero_index = batch_shift;
1651
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1652
+ int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
1653
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1654
+ int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
1655
+ int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
1656
+
1657
+ if (w_index1 >= weight_total || (2 * k + h)>=height) {
1658
+ weight[k]=__float2half2_rn(0);
1659
+ } else{
1660
+ //int zero_index = batch_shift + h; // [batch,head, w]
1661
+ //float scale_f1 = __half2float(scales[zero_index1]);
1662
+ //float zero_f1 = __half2float(zeros[zero_index1]);
1663
+ if (w_index2>=weight_total){
1664
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
1665
+ w_tmp2 = __float2half(0);
1666
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1667
+ //printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1668
+ }else{
1669
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1670
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1671
+ half zero1=zeros[zero_index1];
1672
+ half zero2=zeros[zero_index2];
1673
+ half scale1=scales[zero_index1];
1674
+ half scale2=scales[zero_index2];
1675
+ weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
1676
+ //weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1677
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1678
+ }
1679
+ }
1680
+ }
1681
+
1682
+
1683
+ for (int vr = 0; vr < vec_row; ++vr){
1684
+ float res=0;
1685
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1686
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1687
+
1688
+ if (vec_index < input_total) {
1689
+ //blockvec[tid] = __half2float(vec[vec_index]);
1690
+ blockvec[tid] = vec[vec_index];
1691
+ //printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
1692
+ } else {
1693
+ blockvec[tid] = __float2half(0);
1694
+ //blockvec[tid] = 0;
1695
+ }
1696
+ __syncthreads();
1697
+ if (out_index < out_total) {
1698
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1699
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1700
+ res += __low2float(res2) + __high2float(res2);
1701
+ }
1702
+ atomicAdd(&mul[out_index], __float2half(res));
1703
+ }
1704
+ __syncthreads();
1705
+ }
1706
+ }
1707
+ }
1708
+ }
qwen/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QWenLMHeadModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen.QWenConfig",
7
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
8
+ },
9
+ "attn_dropout_prob": 0.0,
10
+ "bf16": false,
11
+ "emb_dropout_prob": 0.0,
12
+ "fp16": true,
13
+ "fp32": false,
14
+ "hidden_size": 5120,
15
+ "intermediate_size": 27392,
16
+ "initializer_range": 0.02,
17
+ "kv_channels": 128,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "qwen",
21
+ "no_bias": true,
22
+ "num_attention_heads": 40,
23
+ "num_hidden_layers": 40,
24
+ "onnx_safe": null,
25
+ "quantization_config": {
26
+ "bits": 4,
27
+ "group_size": 128,
28
+ "damp_percent": 0.01,
29
+ "desc_act": false,
30
+ "static_groups": false,
31
+ "sym": true,
32
+ "true_sequential": true,
33
+ "model_name_or_path": null,
34
+ "model_file_base_name": "model",
35
+ "quant_method": "gptq"
36
+ },
37
+ "rotary_emb_base": 10000,
38
+ "rotary_pct": 1.0,
39
+ "scale_attn_weights": true,
40
+ "seq_length": 8192,
41
+ "tie_word_embeddings": false,
42
+ "tokenizer_class": "QWenTokenizer",
43
+ "transformers_version": "4.32.0",
44
+ "use_cache": true,
45
+ "use_dynamic_ntk": true,
46
+ "use_flash_attn": "auto",
47
+ "use_logn_attn": true,
48
+ "vocab_size": 152064
49
+ }
qwen/configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
qwen/cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
qwen/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "max_window_size": 6144,
6
+ "max_new_tokens": 512,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.8,
10
+ "repetition_penalty": 1.1,
11
+ "transformers_version": "4.31.0"
12
+ }
qwen/modeling_qwen.py ADDED
@@ -0,0 +1,1435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ import torch.utils.checkpoint
14
+ from torch.cuda.amp import autocast
15
+
16
+ from torch.nn import CrossEntropyLoss
17
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
18
+ from transformers.generation.logits_process import LogitsProcessorList
19
+
20
+ if TYPE_CHECKING:
21
+ from transformers.generation.streamers import BaseStreamer
22
+ from transformers.generation.utils import GenerateOutput
23
+ from transformers.modeling_outputs import (
24
+ BaseModelOutputWithPast,
25
+ CausalLMOutputWithPast,
26
+ )
27
+ from transformers.modeling_utils import PreTrainedModel
28
+ from transformers.utils import logging
29
+
30
+ try:
31
+ from einops import rearrange
32
+ except ImportError:
33
+ rearrange = None
34
+ from torch import nn
35
+
36
+ SUPPORT_CUDA = torch.cuda.is_available()
37
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
38
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
39
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
40
+
41
+
42
+ from .configuration_qwen import QWenConfig
43
+ from .qwen_generation_utils import (
44
+ HistoryType,
45
+ make_context,
46
+ decode_tokens,
47
+ get_stop_words_ids,
48
+ StopWordsLogitsProcessor,
49
+ )
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CHECKPOINT_FOR_DOC = "qwen"
55
+ _CONFIG_FOR_DOC = "QWenConfig"
56
+
57
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
58
+
59
+ _ERROR_BAD_CHAT_FORMAT = """\
60
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
61
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
62
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
63
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
64
+ """
65
+
66
+ _SENTINEL = object()
67
+ _ERROR_STREAM_IN_CHAT = """\
68
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
69
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
70
+ """
71
+
72
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
73
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
74
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
75
+ """
76
+
77
+ apply_rotary_emb_func = None
78
+ rms_norm = None
79
+ flash_attn_unpadded_func = None
80
+
81
+ def _import_flash_attn():
82
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
83
+ try:
84
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
85
+ apply_rotary_emb_func = __apply_rotary_emb_func
86
+ except ImportError:
87
+ logger.warn(
88
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
89
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
90
+ )
91
+
92
+ try:
93
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
94
+ rms_norm = __rms_norm
95
+ except ImportError:
96
+ logger.warn(
97
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
98
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
99
+ )
100
+
101
+ try:
102
+ import flash_attn
103
+ if not hasattr(flash_attn, '__version__'):
104
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
105
+ else:
106
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
107
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
108
+ else:
109
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
110
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
111
+ except ImportError:
112
+ logger.warn(
113
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
114
+ "https://github.com/Dao-AILab/flash-attention"
115
+ )
116
+
117
+ def quantize_cache_v(fdata, bits, qmax, qmin):
118
+ # b, s, head, h-dim->b, head, s, h-dim
119
+ qtype = torch.uint8
120
+ device = fdata.device
121
+ shape = fdata.shape
122
+
123
+ fdata_cal = torch.flatten(fdata, 2)
124
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
125
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
126
+ # Compute params
127
+ if qmax.device != fmax.device:
128
+ qmax = qmax.to(device)
129
+ qmin = qmin.to(device)
130
+ scale = (fmax - fmin) / (qmax - qmin)
131
+ zero = qmin - fmin / scale
132
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
133
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
134
+ # Quantize
135
+ res_data = fdata / scale + zero
136
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
137
+ return qdata.contiguous(), scale, zero
138
+
139
+ def dequantize_cache_torch(qdata, scale, zero):
140
+ data = scale * (qdata - zero)
141
+ return data
142
+
143
+ class FlashSelfAttention(torch.nn.Module):
144
+ def __init__(
145
+ self,
146
+ causal=False,
147
+ softmax_scale=None,
148
+ attention_dropout=0.0,
149
+ ):
150
+ super().__init__()
151
+ assert flash_attn_unpadded_func is not None, (
152
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
153
+ )
154
+ assert (
155
+ rearrange is not None
156
+ ), "Please install einops first, e.g., with pip install einops"
157
+ self.causal = causal
158
+ self.softmax_scale = softmax_scale
159
+ self.dropout_p = attention_dropout
160
+
161
+ def unpad_input(self, hidden_states, attention_mask):
162
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
163
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
164
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
165
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
166
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
167
+ hidden_states = hidden_states[indices]
168
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
169
+
170
+ def pad_input(self, hidden_states, indices, batch, seqlen):
171
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
172
+ dtype=hidden_states.dtype)
173
+ output[indices] = hidden_states
174
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
175
+
176
+ def forward(self, q, k, v, attention_mask=None):
177
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
178
+ assert all((i.is_cuda for i in (q, k, v)))
179
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
180
+ seqlen_k = k.shape[1]
181
+ seqlen_out = seqlen_q
182
+
183
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
184
+ cu_seqlens_q = torch.arange(
185
+ 0,
186
+ (batch_size + 1) * seqlen_q,
187
+ step=seqlen_q,
188
+ dtype=torch.int32,
189
+ device=q.device,
190
+ )
191
+
192
+ if batch_size > 1 and attention_mask is not None:
193
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
194
+ if q.size(0) == v.size(0):
195
+ q = q[indices_k]
196
+ cu_seqlens_q = cu_seqlens_k
197
+ seqlen_q = seqlen_k
198
+ v = v[indices_k]
199
+ else:
200
+ cu_seqlens_k = torch.arange(
201
+ 0,
202
+ (batch_size + 1) * seqlen_k,
203
+ step=seqlen_k,
204
+ dtype=torch.int32,
205
+ device=q.device,
206
+ )
207
+
208
+ if self.training:
209
+ assert seqlen_k == seqlen_q
210
+ is_causal = self.causal
211
+ dropout_p = self.dropout_p
212
+ else:
213
+ is_causal = seqlen_q == seqlen_k
214
+ dropout_p = 0
215
+
216
+ output = flash_attn_unpadded_func(
217
+ q,
218
+ k,
219
+ v,
220
+ cu_seqlens_q,
221
+ cu_seqlens_k,
222
+ seqlen_q,
223
+ seqlen_k,
224
+ dropout_p,
225
+ softmax_scale=self.softmax_scale,
226
+ causal=is_causal,
227
+ )
228
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
229
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
230
+ else:
231
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
232
+ output = output.view(new_shape)
233
+ return output
234
+
235
+
236
+ class QWenAttention(nn.Module):
237
+ def __init__(self, config):
238
+ super().__init__()
239
+
240
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
241
+ self.seq_length = config.seq_length
242
+
243
+ self.hidden_size = config.hidden_size
244
+ self.split_size = config.hidden_size
245
+ self.num_heads = config.num_attention_heads
246
+ self.head_dim = self.hidden_size // self.num_heads
247
+
248
+ self.use_flash_attn = config.use_flash_attn
249
+ self.scale_attn_weights = True
250
+
251
+ self.projection_size = config.kv_channels * config.num_attention_heads
252
+
253
+ assert self.projection_size % config.num_attention_heads == 0
254
+ self.hidden_size_per_attention_head = (
255
+ self.projection_size // config.num_attention_heads
256
+ )
257
+
258
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
259
+
260
+ self.c_proj = nn.Linear(
261
+ config.hidden_size, self.projection_size, bias=not config.no_bias
262
+ )
263
+
264
+ self.is_fp32 = not (config.bf16 or config.fp16)
265
+ if (
266
+ self.use_flash_attn
267
+ and flash_attn_unpadded_func is not None
268
+ and not self.is_fp32
269
+ ):
270
+ self.core_attention_flash = FlashSelfAttention(
271
+ causal=True, attention_dropout=config.attn_dropout_prob
272
+ )
273
+ self.bf16 = config.bf16
274
+
275
+ self.use_dynamic_ntk = config.use_dynamic_ntk
276
+ self.use_logn_attn = config.use_logn_attn
277
+
278
+ logn_list = [
279
+ math.log(i, self.seq_length) if i > self.seq_length else 1
280
+ for i in range(1, 32768)
281
+ ]
282
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
283
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
284
+
285
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
286
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
287
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
288
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
289
+ cache_dtype = torch.float
290
+ if self.bf16:
291
+ cache_dtype=torch.bfloat16
292
+ elif config.fp16:
293
+ cache_dtype = torch.float16
294
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
295
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
296
+
297
+ if config.use_cache_quantization and config.use_cache_kernel:
298
+ from .cpp_kernels import cache_autogptq_cuda_256
299
+ try:
300
+ self.cache_kernels = cache_autogptq_cuda_256
301
+ except ImportError:
302
+ self.cache_kernels = None
303
+
304
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
305
+ device = query.device
306
+ if self.use_cache_quantization:
307
+ qk, qk_scale, qk_zero = key
308
+ if self.use_cache_kernel and self.cache_kernels is not None:
309
+ shape = query.shape[:-1] + (qk.shape[-2],)
310
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
311
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
312
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
313
+ qk.transpose(-1, -2).contiguous(),
314
+ attn_weights,
315
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
316
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
317
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
318
+ else:
319
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
320
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
321
+ else:
322
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
323
+
324
+ if self.scale_attn_weights:
325
+ if self.use_cache_quantization:
326
+ size_temp = value[0].size(-1)
327
+ else:
328
+ size_temp = value.size(-1)
329
+ attn_weights = attn_weights / torch.full(
330
+ [],
331
+ size_temp ** 0.5,
332
+ dtype=attn_weights.dtype,
333
+ device=attn_weights.device,
334
+ )
335
+ if self.use_cache_quantization:
336
+ query_length, key_length = query.size(-2), key[0].size(-2)
337
+ else:
338
+ query_length, key_length = query.size(-2), key.size(-2)
339
+ causal_mask = registered_causal_mask[
340
+ :, :, key_length - query_length : key_length, :key_length
341
+ ]
342
+ mask_value = torch.finfo(attn_weights.dtype).min
343
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
344
+ attn_weights.device
345
+ )
346
+ attn_weights = torch.where(
347
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
348
+ )
349
+
350
+ if attention_mask is not None:
351
+ attn_weights = attn_weights + attention_mask
352
+
353
+ if self.softmax_in_fp32:
354
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
355
+ else:
356
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
357
+
358
+ attn_weights = attn_weights.type(query.dtype)
359
+ attn_weights = self.attn_dropout(attn_weights)
360
+
361
+ if head_mask is not None:
362
+ attn_weights = attn_weights * head_mask
363
+
364
+ if self.use_cache_quantization:
365
+ qv, qv_scale, qv_zero = value
366
+ if self.use_cache_kernel and self.cache_kernels is not None:
367
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
368
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
369
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
370
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
371
+ qv.contiguous(), # dtype: int32
372
+ attn_output,
373
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
374
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
375
+ if attn_output.dtype != query.dtype:
376
+ attn_output = attn_output.to(query.dtype)
377
+ attn_weights = attn_weights.to(query.dtype)
378
+ else:
379
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
380
+ attn_output = torch.matmul(attn_weights, value)
381
+ else:
382
+ attn_output = torch.matmul(attn_weights, value)
383
+
384
+ attn_output = attn_output.transpose(1, 2)
385
+
386
+ return attn_output, attn_weights
387
+
388
+ def _upcast_and_reordered_attn(
389
+ self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
390
+ ):
391
+ bsz, num_heads, q_seq_len, dk = query.size()
392
+ _, _, k_seq_len, _ = key.size()
393
+
394
+ attn_weights = torch.empty(
395
+ bsz * num_heads,
396
+ q_seq_len,
397
+ k_seq_len,
398
+ dtype=torch.float32,
399
+ device=query.device,
400
+ )
401
+
402
+ scale_factor = 1.0
403
+ if self.scale_attn_weights:
404
+ scale_factor /= float(value.size(-1)) ** 0.5
405
+
406
+ with autocast(enabled=False):
407
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
408
+ -1, dk, k_seq_len
409
+ )
410
+ attn_weights = torch.baddbmm(
411
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
412
+ )
413
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
414
+
415
+ query_length, key_length = query.size(-2), key.size(-2)
416
+ causal_mask = registered_causal_mask[
417
+ :, :, key_length - query_length : key_length, :key_length
418
+ ]
419
+ mask_value = torch.finfo(attn_weights.dtype).min
420
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
421
+ attn_weights.device
422
+ )
423
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
424
+
425
+ if attention_mask is not None:
426
+ attn_weights = attn_weights + attention_mask
427
+
428
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
429
+
430
+ if attn_weights.dtype != torch.float32:
431
+ raise RuntimeError(
432
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
433
+ )
434
+ attn_weights = attn_weights.type(value.dtype)
435
+ attn_weights = self.attn_dropout(attn_weights)
436
+
437
+ if head_mask is not None:
438
+ attn_weights = attn_weights * head_mask
439
+
440
+ attn_output = torch.matmul(attn_weights, value)
441
+
442
+ return attn_output, attn_weights
443
+
444
+ def _split_heads(self, tensor, num_heads, attn_head_size):
445
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
446
+ tensor = tensor.view(new_shape)
447
+ return tensor
448
+
449
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
450
+ tensor = tensor.contiguous()
451
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
452
+ return tensor.view(new_shape)
453
+
454
+ def forward(
455
+ self,
456
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
457
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
458
+ registered_causal_mask: Optional[torch.Tensor] = None,
459
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
460
+ attention_mask: Optional[torch.FloatTensor] = None,
461
+ head_mask: Optional[torch.FloatTensor] = None,
462
+ encoder_hidden_states: Optional[torch.Tensor] = None,
463
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
464
+ output_attentions: Optional[bool] = False,
465
+ use_cache: Optional[bool] = False,
466
+ ):
467
+ mixed_x_layer = self.c_attn(hidden_states)
468
+
469
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
470
+
471
+ query = self._split_heads(query, self.num_heads, self.head_dim)
472
+ key = self._split_heads(key, self.num_heads, self.head_dim)
473
+ value = self._split_heads(value, self.num_heads, self.head_dim)
474
+
475
+ if rotary_pos_emb_list is not None:
476
+ cur_len = query.shape[1]
477
+ if len(rotary_pos_emb_list) == 1:
478
+ rotary_pos_emb = rotary_pos_emb_list[0]
479
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
480
+ rotary_pos_emb = (rotary_pos_emb,) * 2
481
+ q_pos_emb, k_pos_emb = rotary_pos_emb
482
+ # Slice the pos emb for current inference
483
+ query = apply_rotary_pos_emb(query, q_pos_emb)
484
+ key = apply_rotary_pos_emb(key, k_pos_emb)
485
+ else:
486
+ query_list = []
487
+ key_list = []
488
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
489
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
490
+ rotary_pos_emb = (rotary_pos_emb,) * 2
491
+ q_pos_emb, k_pos_emb = rotary_pos_emb
492
+ # Slice the pos emb for current inference
493
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
494
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
495
+ query = torch.cat(query_list, dim=0)
496
+ key = torch.cat(key_list, dim=0)
497
+
498
+ if self.use_cache_quantization:
499
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
500
+ bits=8,
501
+ qmin=self.cache_qmin,
502
+ qmax=self.cache_qmax)
503
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
504
+ bits=8,
505
+ qmin=self.cache_qmin,
506
+ qmax=self.cache_qmax)
507
+
508
+
509
+ if layer_past is not None:
510
+ past_key, past_value = layer_past[0], layer_past[1]
511
+ if self.use_cache_quantization:
512
+ # use_cache_quantization:
513
+ # present=((q_key,key_scale,key_zero_point),
514
+ # (q_value,value_scale,value_zero_point))
515
+ key = (torch.cat((past_key[0], key[0]), dim=2),
516
+ torch.cat((past_key[1], key[1]), dim=2),
517
+ torch.cat((past_key[2], key[2]), dim=2))
518
+ value = (torch.cat((past_value[0], value[0]), dim=2),
519
+ torch.cat((past_value[1], value[1]), dim=2),
520
+ torch.cat((past_value[2], value[2]), dim=2))
521
+ else:
522
+ # not use_cache_quantization:
523
+ # present=(key,value)
524
+ key = torch.cat((past_key, key), dim=1)
525
+ value = torch.cat((past_value, value), dim=1)
526
+
527
+ if use_cache:
528
+ present = (key, value)
529
+ else:
530
+ present = None
531
+
532
+ if self.use_logn_attn and not self.training:
533
+ if self.use_cache_quantization:
534
+ seq_start = key[0].size(2) - query.size(1)
535
+ seq_end = key[0].size(2)
536
+ else:
537
+ seq_start = key.size(1) - query.size(1)
538
+ seq_end = key.size(1)
539
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
540
+ query = query * logn_tensor.expand_as(query)
541
+
542
+ if (
543
+ self.use_flash_attn
544
+ and flash_attn_unpadded_func is not None
545
+ and not self.is_fp32
546
+ and query.is_cuda
547
+ ):
548
+ q, k, v = query, key, value
549
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
550
+ else:
551
+ query = query.permute(0, 2, 1, 3)
552
+ if not self.use_cache_quantization:
553
+ key = key.permute(0, 2, 1, 3)
554
+ value = value.permute(0, 2, 1, 3)
555
+ if (
556
+ registered_causal_mask is None
557
+ and self.use_flash_attn
558
+ and flash_attn_unpadded_func is not None
559
+ and not self.is_fp32
560
+ and not query.is_cuda
561
+ ):
562
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
563
+
564
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
565
+ causal_mask = registered_causal_mask[
566
+ :, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
567
+ ]
568
+ if attention_mask is not None:
569
+ attention_mask = attention_mask.expand(
570
+ -1, -1, causal_mask.size(2), -1
571
+ ).masked_fill(~causal_mask, torch.finfo(query.dtype).min)
572
+ else:
573
+ attention_mask = causal_mask
574
+ attn_output = F.scaled_dot_product_attention(
575
+ query, key, value, attn_mask=attention_mask
576
+ ).transpose(1, 2)
577
+ attn_weight = None
578
+ else:
579
+ attn_output, attn_weight = self._attn(
580
+ query, key, value, registered_causal_mask, attention_mask, head_mask
581
+ )
582
+ context_layer = self._merge_heads(
583
+ attn_output, self.num_heads, self.head_dim
584
+ )
585
+
586
+ attn_output = self.c_proj(context_layer)
587
+
588
+ outputs = (attn_output, present)
589
+ if output_attentions:
590
+ if (
591
+ self.use_flash_attn
592
+ and flash_attn_unpadded_func is not None
593
+ and not self.is_fp32
594
+ ):
595
+ raise ValueError("Cannot output attentions while using flash-attn")
596
+ else:
597
+ outputs += (attn_weight,)
598
+
599
+ return outputs
600
+
601
+
602
+ class QWenMLP(nn.Module):
603
+ def __init__(self, config):
604
+ super().__init__()
605
+ self.w1 = nn.Linear(
606
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
607
+ )
608
+ self.w2 = nn.Linear(
609
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
610
+ )
611
+ ff_dim_in = config.intermediate_size // 2
612
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
613
+
614
+ def forward(self, hidden_states):
615
+ a1 = self.w1(hidden_states)
616
+ a2 = self.w2(hidden_states)
617
+ intermediate_parallel = a1 * F.silu(a2)
618
+ output = self.c_proj(intermediate_parallel)
619
+ return output
620
+
621
+ class QWenBlock(nn.Module):
622
+ def __init__(self, config):
623
+ super().__init__()
624
+ hidden_size = config.hidden_size
625
+ self.bf16 = config.bf16
626
+
627
+ self.ln_1 = RMSNorm(
628
+ hidden_size,
629
+ eps=config.layer_norm_epsilon,
630
+ )
631
+ self.attn = QWenAttention(config)
632
+ self.ln_2 = RMSNorm(
633
+ hidden_size,
634
+ eps=config.layer_norm_epsilon,
635
+ )
636
+
637
+ self.mlp = QWenMLP(config)
638
+
639
+ def forward(
640
+ self,
641
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
642
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
643
+ registered_causal_mask: Optional[torch.Tensor] = None,
644
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
645
+ attention_mask: Optional[torch.FloatTensor] = None,
646
+ head_mask: Optional[torch.FloatTensor] = None,
647
+ encoder_hidden_states: Optional[torch.Tensor] = None,
648
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
649
+ use_cache: Optional[bool] = False,
650
+ output_attentions: Optional[bool] = False,
651
+ ):
652
+ layernorm_output = self.ln_1(hidden_states)
653
+
654
+ attn_outputs = self.attn(
655
+ layernorm_output,
656
+ rotary_pos_emb_list,
657
+ registered_causal_mask=registered_causal_mask,
658
+ layer_past=layer_past,
659
+ attention_mask=attention_mask,
660
+ head_mask=head_mask,
661
+ use_cache=use_cache,
662
+ output_attentions=output_attentions,
663
+ )
664
+ attn_output = attn_outputs[0]
665
+
666
+ outputs = attn_outputs[1:]
667
+
668
+ residual = hidden_states
669
+ layernorm_input = attn_output + residual
670
+
671
+ layernorm_output = self.ln_2(layernorm_input)
672
+
673
+ residual = layernorm_input
674
+ mlp_output = self.mlp(layernorm_output)
675
+ hidden_states = residual + mlp_output
676
+
677
+ if use_cache:
678
+ outputs = (hidden_states,) + outputs
679
+ else:
680
+ outputs = (hidden_states,) + outputs[1:]
681
+
682
+ return outputs
683
+
684
+
685
+ class QWenPreTrainedModel(PreTrainedModel):
686
+ config_class = QWenConfig
687
+ base_model_prefix = "transformer"
688
+ is_parallelizable = False
689
+ supports_gradient_checkpointing = True
690
+ _no_split_modules = ["QWenBlock"]
691
+
692
+ def __init__(self, *inputs, **kwargs):
693
+ super().__init__(*inputs, **kwargs)
694
+
695
+ def _init_weights(self, module):
696
+ """Initialize the weights."""
697
+ if isinstance(module, nn.Linear):
698
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
699
+ if module.bias is not None:
700
+ module.bias.data.zero_()
701
+ elif isinstance(module, nn.Embedding):
702
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
703
+ if module.padding_idx is not None:
704
+ module.weight.data[module.padding_idx].zero_()
705
+ elif isinstance(module, RMSNorm):
706
+ module.weight.data.fill_(1.0)
707
+
708
+ for name, p in module.named_parameters():
709
+ if name == "c_proj.weight":
710
+ p.data.normal_(
711
+ mean=0.0,
712
+ std=(
713
+ self.config.initializer_range
714
+ / math.sqrt(2 * self.config.num_hidden_layers)
715
+ ),
716
+ )
717
+
718
+ def _set_gradient_checkpointing(self, module, value=False):
719
+ if isinstance(module, QWenModel):
720
+ module.gradient_checkpointing = value
721
+
722
+
723
+ class QWenModel(QWenPreTrainedModel):
724
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
725
+
726
+ def __init__(self, config):
727
+ super().__init__(config)
728
+ self.vocab_size = config.vocab_size
729
+ self.num_hidden_layers = config.num_hidden_layers
730
+ self.embed_dim = config.hidden_size
731
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
732
+
733
+ self.gradient_checkpointing = False
734
+ self.use_dynamic_ntk = config.use_dynamic_ntk
735
+ self.seq_length = config.seq_length
736
+
737
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
738
+
739
+ self.drop = nn.Dropout(config.emb_dropout_prob)
740
+
741
+ if config.rotary_pct == 1.0:
742
+ self.rotary_ndims = None
743
+ else:
744
+ assert config.rotary_pct < 1
745
+ self.rotary_ndims = int(
746
+ config.kv_channels * config.rotary_pct
747
+ )
748
+ dim = (
749
+ self.rotary_ndims
750
+ if self.rotary_ndims is not None
751
+ else config.kv_channels
752
+ )
753
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
754
+
755
+ self.use_flash_attn = config.use_flash_attn
756
+ self.is_fp32 = not (config.bf16 or config.fp16)
757
+ if (
758
+ self.use_flash_attn
759
+ and flash_attn_unpadded_func is not None
760
+ and not self.is_fp32
761
+ ):
762
+ self.registered_causal_mask = None
763
+ else:
764
+ max_positions = config.max_position_embeddings
765
+ self.register_buffer(
766
+ "registered_causal_mask",
767
+ torch.tril(
768
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
769
+ ).view(1, 1, max_positions, max_positions),
770
+ persistent=False,
771
+ )
772
+
773
+ self.h = nn.ModuleList(
774
+ [
775
+ QWenBlock(
776
+ config
777
+ )
778
+ for i in range(config.num_hidden_layers)
779
+ ]
780
+ )
781
+ self.ln_f = RMSNorm(
782
+ self.embed_dim,
783
+ eps=config.layer_norm_epsilon,
784
+ )
785
+
786
+ self.post_init()
787
+
788
+ def get_input_embeddings(self):
789
+ return self.wte
790
+
791
+ def set_input_embeddings(self, new_embeddings):
792
+ self.wte = new_embeddings
793
+
794
+ def get_ntk_alpha(self, true_seq_len):
795
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
796
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
797
+ ntk_alpha = max(ntk_alpha, 1)
798
+ return ntk_alpha
799
+
800
+ def forward(
801
+ self,
802
+ input_ids: Optional[torch.LongTensor] = None,
803
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
804
+ attention_mask: Optional[torch.FloatTensor] = None,
805
+ token_type_ids: Optional[torch.LongTensor] = None,
806
+ position_ids: Optional[torch.LongTensor] = None,
807
+ head_mask: Optional[torch.FloatTensor] = None,
808
+ inputs_embeds: Optional[torch.FloatTensor] = None,
809
+ encoder_hidden_states: Optional[torch.Tensor] = None,
810
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
811
+ use_cache: Optional[bool] = None,
812
+ output_attentions: Optional[bool] = None,
813
+ output_hidden_states: Optional[bool] = None,
814
+ return_dict: Optional[bool] = None,
815
+ ):
816
+ output_attentions = (
817
+ output_attentions
818
+ if output_attentions is not None
819
+ else self.config.output_attentions
820
+ )
821
+ output_hidden_states = (
822
+ output_hidden_states
823
+ if output_hidden_states is not None
824
+ else self.config.output_hidden_states
825
+ )
826
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
827
+ return_dict = (
828
+ return_dict if return_dict is not None else self.config.use_return_dict
829
+ )
830
+
831
+ if input_ids is not None and inputs_embeds is not None:
832
+ raise ValueError(
833
+ "You cannot specify both input_ids and inputs_embeds at the same time"
834
+ )
835
+ elif input_ids is not None:
836
+ input_shape = input_ids.size()
837
+ input_ids = input_ids.view(-1, input_shape[-1])
838
+ batch_size = input_ids.shape[0]
839
+ elif inputs_embeds is not None:
840
+ input_shape = inputs_embeds.size()[:-1]
841
+ batch_size = inputs_embeds.shape[0]
842
+ else:
843
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
844
+
845
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
846
+
847
+ if token_type_ids is not None:
848
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
849
+ if position_ids is not None:
850
+ position_ids = position_ids.view(-1, input_shape[-1])
851
+
852
+ if past_key_values is None:
853
+ past_length = 0
854
+ past_key_values = tuple([None] * len(self.h))
855
+ else:
856
+ if self.use_cache_quantization:
857
+ past_length = past_key_values[0][0][0].size(2)
858
+ else:
859
+ past_length = past_key_values[0][0].size(-2)
860
+ if position_ids is None:
861
+ position_ids = torch.arange(
862
+ past_length,
863
+ input_shape[-1] + past_length,
864
+ dtype=torch.long,
865
+ device=device,
866
+ )
867
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
868
+
869
+ if attention_mask is not None:
870
+ if batch_size <= 0:
871
+ raise ValueError("batch_size has to be defined and > 0")
872
+ attention_mask = attention_mask.view(batch_size, -1)
873
+ attention_mask = attention_mask[:, None, None, :]
874
+ attention_mask = attention_mask.to(dtype=self.dtype)
875
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
876
+
877
+ encoder_attention_mask = None
878
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
879
+
880
+ if inputs_embeds is None:
881
+ inputs_embeds = self.wte(input_ids)
882
+ hidden_states = inputs_embeds
883
+
884
+ kv_seq_len = hidden_states.size()[1]
885
+ if past_key_values[0] is not None:
886
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
887
+ if self.use_cache_quantization:
888
+ kv_seq_len += past_key_values[0][0][0].shape[2]
889
+ else:
890
+ kv_seq_len += past_key_values[0][0].shape[1]
891
+
892
+ if self.training or not self.use_dynamic_ntk:
893
+ ntk_alpha_list = [1.0]
894
+ elif kv_seq_len != hidden_states.size()[1]:
895
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
896
+ else:
897
+ ntk_alpha_list = []
898
+ if attention_mask is not None and kv_seq_len > self.seq_length:
899
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
900
+ for i in range(hidden_states.size()[0]):
901
+ true_seq_len = true_seq_lens[i].item()
902
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
903
+ ntk_alpha_list.append(ntk_alpha)
904
+ else:
905
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
906
+ ntk_alpha_list.append(ntk_alpha)
907
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
908
+ rotary_pos_emb_list = [
909
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
910
+ ]
911
+
912
+ hidden_states = self.drop(hidden_states)
913
+ output_shape = input_shape + (hidden_states.size(-1),)
914
+
915
+ if self.gradient_checkpointing and self.training:
916
+ if use_cache:
917
+ logger.warning_once(
918
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
919
+ )
920
+ use_cache = False
921
+
922
+ presents = () if use_cache else None
923
+ all_self_attentions = () if output_attentions else None
924
+ all_hidden_states = () if output_hidden_states else None
925
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
926
+
927
+ if output_hidden_states:
928
+ all_hidden_states = all_hidden_states + (hidden_states,)
929
+
930
+ if self.gradient_checkpointing and self.training:
931
+
932
+ def create_custom_forward(module):
933
+ def custom_forward(*inputs):
934
+ # None for past_key_value
935
+ return module(*inputs, use_cache, output_attentions)
936
+
937
+ return custom_forward
938
+
939
+ outputs = torch.utils.checkpoint.checkpoint(
940
+ create_custom_forward(block),
941
+ hidden_states,
942
+ rotary_pos_emb_list,
943
+ self.registered_causal_mask,
944
+ None,
945
+ attention_mask,
946
+ head_mask[i],
947
+ encoder_hidden_states,
948
+ encoder_attention_mask,
949
+ )
950
+ else:
951
+ outputs = block(
952
+ hidden_states,
953
+ layer_past=layer_past,
954
+ rotary_pos_emb_list=rotary_pos_emb_list,
955
+ registered_causal_mask=self.registered_causal_mask,
956
+ attention_mask=attention_mask,
957
+ head_mask=head_mask[i],
958
+ encoder_hidden_states=encoder_hidden_states,
959
+ encoder_attention_mask=encoder_attention_mask,
960
+ use_cache=use_cache,
961
+ output_attentions=output_attentions,
962
+ )
963
+
964
+ hidden_states = outputs[0]
965
+ if use_cache is True:
966
+ presents = presents + (outputs[1],)
967
+
968
+ if output_attentions:
969
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
970
+
971
+ hidden_states = self.ln_f(hidden_states)
972
+ hidden_states = hidden_states.view(output_shape)
973
+ # Add last hidden state
974
+ if output_hidden_states:
975
+ all_hidden_states = all_hidden_states + (hidden_states,)
976
+
977
+ if not return_dict:
978
+ return tuple(
979
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
980
+ )
981
+
982
+ return BaseModelOutputWithPast(
983
+ last_hidden_state=hidden_states,
984
+ past_key_values=presents,
985
+ hidden_states=all_hidden_states,
986
+ attentions=all_self_attentions,
987
+ )
988
+
989
+
990
+ class QWenLMHeadModel(QWenPreTrainedModel):
991
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
992
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
993
+
994
+ def __init__(self, config):
995
+ super().__init__(config)
996
+ assert (
997
+ config.bf16 + config.fp16 + config.fp32 <= 1
998
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
999
+ logger.warn(
1000
+ "Warning: please make sure that you are using the latest codes and checkpoints, "
1001
+ "especially if you used Qwen-7B before 09.25.2023."
1002
+ "请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
1003
+ )
1004
+
1005
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
1006
+
1007
+ if autoset_precision:
1008
+ if SUPPORT_BF16:
1009
+ logger.warn(
1010
+ "The model is automatically converting to bf16 for faster inference. "
1011
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
1012
+ )
1013
+ config.bf16 = True
1014
+ elif SUPPORT_FP16:
1015
+ logger.warn(
1016
+ "The model is automatically converting to fp16 for faster inference. "
1017
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
1018
+ )
1019
+ config.fp16 = True
1020
+ else:
1021
+ config.fp32 = True
1022
+
1023
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
1024
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
1025
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
1026
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
1027
+ if config.fp32:
1028
+ if SUPPORT_BF16:
1029
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
1030
+ elif SUPPORT_FP16:
1031
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
1032
+
1033
+ if config.use_flash_attn == "auto":
1034
+ if config.bf16 or config.fp16:
1035
+ logger.warn("Try importing flash-attention for faster inference...")
1036
+ config.use_flash_attn = True
1037
+ else:
1038
+ config.use_flash_attn = False
1039
+ if config.use_flash_attn and config.fp32:
1040
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
1041
+
1042
+ if config.use_flash_attn:
1043
+ _import_flash_attn()
1044
+
1045
+ self.transformer = QWenModel(config)
1046
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1047
+
1048
+ if config.bf16:
1049
+ self.transformer.bfloat16()
1050
+ self.lm_head.bfloat16()
1051
+ if config.fp16:
1052
+ self.transformer.half()
1053
+ self.lm_head.half()
1054
+ self.post_init()
1055
+
1056
+
1057
+ def get_output_embeddings(self):
1058
+ return self.lm_head
1059
+
1060
+ def set_output_embeddings(self, new_embeddings):
1061
+ self.lm_head = new_embeddings
1062
+
1063
+ def prepare_inputs_for_generation(
1064
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1065
+ ):
1066
+ token_type_ids = kwargs.get("token_type_ids", None)
1067
+ if past_key_values:
1068
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1069
+ if token_type_ids is not None:
1070
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1071
+
1072
+ attention_mask = kwargs.get("attention_mask", None)
1073
+ position_ids = kwargs.get("position_ids", None)
1074
+
1075
+ if attention_mask is not None and position_ids is None:
1076
+ position_ids = attention_mask.long().cumsum(-1) - 1
1077
+ position_ids.masked_fill_(attention_mask == 0, 1)
1078
+ if past_key_values:
1079
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1080
+ else:
1081
+ position_ids = None
1082
+
1083
+ if inputs_embeds is not None and past_key_values is None:
1084
+ model_inputs = {"inputs_embeds": inputs_embeds}
1085
+ else:
1086
+ model_inputs = {"input_ids": input_ids}
1087
+
1088
+ model_inputs.update(
1089
+ {
1090
+ "past_key_values": past_key_values,
1091
+ "use_cache": kwargs.get("use_cache"),
1092
+ "position_ids": position_ids,
1093
+ "attention_mask": attention_mask,
1094
+ "token_type_ids": token_type_ids,
1095
+ }
1096
+ )
1097
+ return model_inputs
1098
+
1099
+ def forward(
1100
+ self,
1101
+ input_ids: Optional[torch.LongTensor] = None,
1102
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1103
+ attention_mask: Optional[torch.FloatTensor] = None,
1104
+ token_type_ids: Optional[torch.LongTensor] = None,
1105
+ position_ids: Optional[torch.LongTensor] = None,
1106
+ head_mask: Optional[torch.FloatTensor] = None,
1107
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1108
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1109
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1110
+ labels: Optional[torch.LongTensor] = None,
1111
+ use_cache: Optional[bool] = None,
1112
+ output_attentions: Optional[bool] = None,
1113
+ output_hidden_states: Optional[bool] = None,
1114
+ return_dict: Optional[bool] = None,
1115
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1116
+
1117
+ return_dict = (
1118
+ return_dict if return_dict is not None else self.config.use_return_dict
1119
+ )
1120
+
1121
+ transformer_outputs = self.transformer(
1122
+ input_ids,
1123
+ past_key_values=past_key_values,
1124
+ attention_mask=attention_mask,
1125
+ token_type_ids=token_type_ids,
1126
+ position_ids=position_ids,
1127
+ head_mask=head_mask,
1128
+ inputs_embeds=inputs_embeds,
1129
+ encoder_hidden_states=encoder_hidden_states,
1130
+ encoder_attention_mask=encoder_attention_mask,
1131
+ use_cache=use_cache,
1132
+ output_attentions=output_attentions,
1133
+ output_hidden_states=output_hidden_states,
1134
+ return_dict=return_dict,
1135
+ )
1136
+ hidden_states = transformer_outputs[0]
1137
+
1138
+ lm_logits = self.lm_head(hidden_states)
1139
+
1140
+ loss = None
1141
+ if labels is not None:
1142
+ labels = labels.to(lm_logits.device)
1143
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1144
+ shift_labels = labels[..., 1:].contiguous()
1145
+ loss_fct = CrossEntropyLoss()
1146
+ loss = loss_fct(
1147
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1148
+ )
1149
+
1150
+ if not return_dict:
1151
+ output = (lm_logits,) + transformer_outputs[1:]
1152
+ return ((loss,) + output) if loss is not None else output
1153
+
1154
+ return CausalLMOutputWithPast(
1155
+ loss=loss,
1156
+ logits=lm_logits,
1157
+ past_key_values=transformer_outputs.past_key_values,
1158
+ hidden_states=transformer_outputs.hidden_states,
1159
+ attentions=transformer_outputs.attentions,
1160
+ )
1161
+
1162
+ @staticmethod
1163
+ def _reorder_cache(
1164
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1165
+ ) -> Tuple[Tuple[torch.Tensor]]:
1166
+
1167
+ return tuple(
1168
+ tuple(
1169
+ past_state.index_select(0, beam_idx.to(past_state.device))
1170
+ for past_state in layer_past
1171
+ )
1172
+ for layer_past in past_key_values
1173
+ )
1174
+
1175
+ def chat(
1176
+ self,
1177
+ tokenizer: PreTrainedTokenizer,
1178
+ query: str,
1179
+ history: Optional[HistoryType],
1180
+ system: str = "You are a helpful assistant.",
1181
+ stream: Optional[bool] = _SENTINEL,
1182
+ stop_words_ids: Optional[List[List[int]]] = None,
1183
+ generation_config: Optional[GenerationConfig] = None,
1184
+ **kwargs,
1185
+ ) -> Tuple[str, HistoryType]:
1186
+ generation_config = generation_config if generation_config is not None else self.generation_config
1187
+
1188
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1189
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1190
+ if history is None:
1191
+ history = []
1192
+ else:
1193
+ # make a copy of the user's input such that is is left untouched
1194
+ history = copy.deepcopy(history)
1195
+
1196
+ if stop_words_ids is None:
1197
+ stop_words_ids = []
1198
+
1199
+ max_window_size = kwargs.get('max_window_size', None)
1200
+ if max_window_size is None:
1201
+ max_window_size = generation_config.max_window_size
1202
+ raw_text, context_tokens = make_context(
1203
+ tokenizer,
1204
+ query,
1205
+ history=history,
1206
+ system=system,
1207
+ max_window_size=max_window_size,
1208
+ chat_format=generation_config.chat_format,
1209
+ )
1210
+
1211
+ stop_words_ids.extend(get_stop_words_ids(
1212
+ generation_config.chat_format, tokenizer
1213
+ ))
1214
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1215
+ outputs = self.generate(
1216
+ input_ids,
1217
+ stop_words_ids=stop_words_ids,
1218
+ return_dict_in_generate=False,
1219
+ generation_config=generation_config,
1220
+ **kwargs,
1221
+ )
1222
+
1223
+ response = decode_tokens(
1224
+ outputs[0],
1225
+ tokenizer,
1226
+ raw_text_len=len(raw_text),
1227
+ context_length=len(context_tokens),
1228
+ chat_format=generation_config.chat_format,
1229
+ verbose=False,
1230
+ errors='replace'
1231
+ )
1232
+
1233
+ # as history is a copy of the user inputs,
1234
+ # we can always return the new turn to the user.
1235
+ # separating input history and output history also enables the user
1236
+ # to implement more complex history management
1237
+ history.append((query, response))
1238
+
1239
+ return response, history
1240
+
1241
+ def chat_stream(
1242
+ self,
1243
+ tokenizer: PreTrainedTokenizer,
1244
+ query: str,
1245
+ history: Optional[HistoryType],
1246
+ system: str = "You are a helpful assistant.",
1247
+ stop_words_ids: Optional[List[List[int]]] = None,
1248
+ logits_processor: Optional[LogitsProcessorList] = None,
1249
+ generation_config: Optional[GenerationConfig] = None,
1250
+ **kwargs,
1251
+ ) -> Generator[str, Any, None]:
1252
+ generation_config = generation_config if generation_config is not None else self.generation_config
1253
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1254
+ if history is None:
1255
+ history = []
1256
+ if stop_words_ids is None:
1257
+ stop_words_ids = []
1258
+
1259
+ max_window_size = kwargs.get('max_window_size', None)
1260
+ if max_window_size is None:
1261
+ max_window_size = generation_config.max_window_size
1262
+ raw_text, context_tokens = make_context(
1263
+ tokenizer,
1264
+ query,
1265
+ history=history,
1266
+ system=system,
1267
+ max_window_size=max_window_size,
1268
+ chat_format=generation_config.chat_format,
1269
+ )
1270
+
1271
+ stop_words_ids.extend(get_stop_words_ids(
1272
+ generation_config.chat_format, tokenizer
1273
+ ))
1274
+ if stop_words_ids is not None:
1275
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1276
+ stop_words_ids=stop_words_ids,
1277
+ eos_token_id=generation_config.eos_token_id,
1278
+ )
1279
+ if logits_processor is None:
1280
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1281
+ else:
1282
+ logits_processor.append(stop_words_logits_processor)
1283
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1284
+
1285
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1286
+ self.__class__.generate_stream = NewGenerationMixin.generate
1287
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1288
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1289
+
1290
+ def stream_generator():
1291
+ outputs = []
1292
+ for token in self.generate_stream(
1293
+ input_ids,
1294
+ return_dict_in_generate=False,
1295
+ generation_config=stream_config,
1296
+ logits_processor=logits_processor,
1297
+ seed=-1,
1298
+ **kwargs):
1299
+ outputs.append(token.item())
1300
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1301
+
1302
+ return stream_generator()
1303
+
1304
+ def generate(
1305
+ self,
1306
+ inputs: Optional[torch.Tensor] = None,
1307
+ generation_config: Optional[GenerationConfig] = None,
1308
+ logits_processor: Optional[LogitsProcessorList] = None,
1309
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1310
+ prefix_allowed_tokens_fn: Optional[
1311
+ Callable[[int, torch.Tensor], List[int]]
1312
+ ] = None,
1313
+ synced_gpus: Optional[bool] = None,
1314
+ assistant_model: Optional["PreTrainedModel"] = None,
1315
+ streamer: Optional["BaseStreamer"] = None,
1316
+ **kwargs,
1317
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1318
+ generation_config = generation_config if generation_config is not None else self.generation_config
1319
+
1320
+ # Process stop_words_ids.
1321
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1322
+ if stop_words_ids is None and generation_config is not None:
1323
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1324
+ if stop_words_ids is None:
1325
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1326
+
1327
+ if stop_words_ids is not None:
1328
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1329
+ stop_words_ids=stop_words_ids,
1330
+ eos_token_id=generation_config.eos_token_id,
1331
+ )
1332
+ if logits_processor is None:
1333
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1334
+ else:
1335
+ logits_processor.append(stop_words_logits_processor)
1336
+
1337
+ return super().generate(
1338
+ inputs,
1339
+ generation_config=generation_config,
1340
+ logits_processor=logits_processor,
1341
+ stopping_criteria=stopping_criteria,
1342
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1343
+ synced_gpus=synced_gpus,
1344
+ assistant_model=assistant_model,
1345
+ streamer=streamer,
1346
+ **kwargs,
1347
+ )
1348
+
1349
+
1350
+ class RotaryEmbedding(torch.nn.Module):
1351
+ def __init__(self, dim, base=10000):
1352
+ super().__init__()
1353
+ self.dim = dim
1354
+ self.base = base
1355
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1356
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1357
+ if importlib.util.find_spec("einops") is None:
1358
+ raise RuntimeError("einops is required for Rotary Embedding")
1359
+
1360
+ self._rotary_pos_emb_cache = None
1361
+ self._seq_len_cached = 0
1362
+ self._ntk_alpha_cached = 1.0
1363
+ self._ntk_alpha_cached_list = [1.0]
1364
+
1365
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1366
+ seqlen = max_seq_len + offset
1367
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1368
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1369
+ self.inv_freq = 1.0 / (
1370
+ base
1371
+ ** (
1372
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1373
+ / self.dim
1374
+ )
1375
+ )
1376
+ self._seq_len_cached = max(2 * seqlen, 16)
1377
+ self._ntk_alpha_cached = ntk_alpha
1378
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1379
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1380
+
1381
+ emb = torch.cat((freqs, freqs), dim=-1)
1382
+ from einops import rearrange
1383
+
1384
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1385
+
1386
+ cos, sin = emb.cos(), emb.sin()
1387
+ self._rotary_pos_emb_cache = [cos, sin]
1388
+
1389
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1390
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1391
+ cos, sin = self._rotary_pos_emb_cache
1392
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1393
+
1394
+
1395
+ def _rotate_half(x):
1396
+ from einops import rearrange
1397
+
1398
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1399
+ x1, x2 = x.unbind(dim=-2)
1400
+ return torch.cat((-x2, x1), dim=-1)
1401
+
1402
+
1403
+ def apply_rotary_pos_emb(t, freqs):
1404
+ cos, sin = freqs
1405
+ if apply_rotary_emb_func is not None and t.is_cuda:
1406
+ t_ = t.float()
1407
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1408
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1409
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1410
+ return output
1411
+ else:
1412
+ rot_dim = freqs[0].shape[-1]
1413
+ cos, sin = freqs
1414
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1415
+ t_ = t_.float()
1416
+ t_pass_ = t_pass_.float()
1417
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1418
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1419
+
1420
+
1421
+ class RMSNorm(torch.nn.Module):
1422
+ def __init__(self, dim: int, eps: float = 1e-6):
1423
+ super().__init__()
1424
+ self.eps = eps
1425
+ self.weight = nn.Parameter(torch.ones(dim))
1426
+
1427
+ def _norm(self, x):
1428
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1429
+
1430
+ def forward(self, x):
1431
+ if rms_norm is not None and x.is_cuda:
1432
+ return rms_norm(x, self.weight, self.eps)
1433
+ else:
1434
+ output = self._norm(x.float()).type_as(x)
1435
+ return output * self.weight
qwen/quantize_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": false,
6
+ "static_groups": false,
7
+ "sym": true,
8
+ "true_sequential": true,
9
+ "model_name_or_path": null,
10
+ "model_file_base_name": "model"
11
+ }
qwen/qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen/qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
qwen/tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
qwen/tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 8192,
3
+ "tokenizer_class": "QWenTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_qwen.QWenTokenizer",
7
+ null
8
+ ]
9
+ }
10
+ }
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ transformers==4.32.0
2
+ accelerate
3
+ tiktoken
4
+ einops
5
+ transformers_stream_generator==0.0.4
6
+ scipy