File size: 17,543 Bytes
20048e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d877fef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import logging
import os
import re
import shutil

import gradio as gr
import openai
import pandas as pd
from backoff import on_exception, expo
from sqlalchemy import create_engine

from tools.doc_qa import DocQAPromptAdapter
from tools.web.overwrites import postprocess, reload_javascript
from tools.web.presets import (
    small_and_beautiful_theme,
    title,
    description,
    description_top,
    CONCURRENT_COUNT
)
from tools.web.utils import (
    convert_to_markdown,
    shared_state,
    reset_textbox,
    cancel_outputing,
    transfer_input,
    reset_state,
    delete_last_conversation
)

logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
)


openai.api_key = "xxx"
doc_adapter = DocQAPromptAdapter()


def add_llm(model_name, api_base, models):
    """ 添加模型 """
    models = models or {}
    if model_name and api_base:
        models.update(
            {
                model_name: api_base
            }
        )
    choices = [m[0] for m in models.items()]
    return "",  "", models, gr.Dropdown.update(choices=choices, value=choices[0] if choices else None)


def set_openai_env(api_base):
    """ 配置接口地址 """
    openai.api_base = api_base
    doc_adapter.embeddings.openai_api_base = api_base


def get_file_list():
    """ 获取文件列表 """
    if not os.path.exists("doc_store"):
        return []
    return os.listdir("doc_store")


file_list = get_file_list()


def upload_file(file):
    """ 上传文件 """
    if not os.path.exists("doc_store"):
        os.mkdir("docs")

    if file is not None:
        filename = os.path.basename(file.name)
        shutil.move(file.name, f"doc_store/{filename}")
        file_list = get_file_list()
        file_list.remove(filename)
        file_list.insert(0, filename)
        return gr.Dropdown.update(choices=file_list, value=filename)


def add_vector_store(filename, model_name, models, chunk_size, chunk_overlap):
    """ 将文件转为向量数据存储 """
    api_base = models[model_name]
    set_openai_env(api_base)
    doc_adapter.chunk_size = chunk_size
    doc_adapter.chunk_overlap = chunk_overlap

    if filename is not None:
        vs_path = f"vector_store/{filename.split('.')[0]}-{filename.split('.')[-1]}"
        if not os.path.exists(vs_path):
            doc_adapter.create_vector_store(f"doc_store/{filename}", vs_path=vs_path)
            msg = f"Successfully added vector store for {filename}!"
        else:
            doc_adapter.reset_vector_store(vs_path=vs_path)
            msg = f"Successfully loaded vector store for {filename}!"
    else:
        msg = "Please select a file!"
    return msg


def add_db(db_user, db_password, db_host, db_port, db_name, databases):
    """ 添加数据库 """
    databases = databases or {}
    if db_user and db_password and db_host and db_port and db_name:
        databases.update(
            {
                db_name: {
                    "user": db_user,
                    "password": db_password,
                    "host": db_host,
                    "port": int(db_port)
                }
            }
        )
    choices = [m[0] for m in databases.items()]
    return "", "", "", "", "", databases, gr.Dropdown.update(choices=choices, value=choices[0] if choices else None)


def get_table_names(select_database, databases):
    """ 获取数据库表名 """
    if select_database:
        db_config = databases[select_database]
        con = create_engine(f"mysql+pymysql://{db_config['user']}:{db_config['password']}@{db_config['host']}:{db_config['port']}/{select_database}")
        tables = pd.read_sql("show tables;", con=con).values
        tables = [t[0] for t in tables]
        return gr.Dropdown.update(choices=tables, value=[tables[0]])


def get_sql_result(x, con):
    q = r"sql\n(.+?);\n"
    sql = re.findall(q, x, re.DOTALL)[0] + ";"
    df = pd.read_sql(sql, con=con).iloc[:10, :]
    return df.to_markdown(numalign="center", stralign="center")


@on_exception(expo, openai.error.RateLimitError, max_tries=5)
def chat_completions_create(params):
    """ chat接口 """
    return openai.ChatCompletion.create(**params)


def predict(
    model_name,
    models,
    text,
    chatbot,
    history,
    top_p,
    temperature,
    max_tokens,
    memory_k,
    is_kgqa,
    single_turn,
    is_dbqa,
    select_database,
    select_table,
    databases,
):
    api_base = models[model_name]
    set_openai_env(api_base)

    if text == "":
        yield chatbot, history, "Empty context."
        return

    if history is None:
        history = []

    messages = []
    if is_dbqa:
        temperature = 0.0
        db_config = databases[select_database]
        con = create_engine(f"mysql+pymysql://{db_config['user']}:{db_config['password']}@{db_config['host']}:{db_config['port']}/{select_database}")
        table_schema = ""
        for t in select_table:
            table_schema += pd.read_sql(f"show create table {t};", con=con)["Create Table"][0] + "\n\n"
        table_schema = table_schema.replace("DEFAULT NULL", "")
        messages.append(
            {
                "role": "system",
                "content": f"你现在是一名SQL助手,能够根据用户的问题生成准确的SQL查询。已知SQL的建表语句为:{table_schema}根据上述数据库信息,回答相关问题。"
            },
        )
    else:
        if not single_turn:
            for h in history[-memory_k:]:
                messages.extend(
                    [
                        {
                            "role": "user",
                            "content": h[0]
                        },
                        {
                            "role": "assistant",
                            "content": h[1]
                        }
                    ]
                )

    messages.append(
        {
            "role": "user",
            "content": doc_adapter(text) if is_kgqa else text
        }
    )

    params = dict(
        stream=True,
        messages=messages,
        model=model_name,
        top_p=top_p,
        temperature=temperature,
        max_tokens=max_tokens
    )

    res = chat_completions_create(params)
    x = ""
    for openai_object in res:
        delta = openai_object.choices[0]["delta"]
        if "content" in delta:
            x += delta["content"]

        a, b = [[y[0], convert_to_markdown(y[1])] for y in history] + [
            [text, convert_to_markdown(x)]
        ], history + [[text, x]]

        yield a, b, "Generating..."

    if shared_state.interrupted:
        shared_state.recover()
        try:
            yield a, b, "Stop: Success"
            return
        except:
            pass

    if is_dbqa:
        try:
            res = get_sql_result(x, con)
            a[-1][-1] += "\n\n" + convert_to_markdown(res)
            b[-1][-1] += "\n\n" + convert_to_markdown(res)
        except:
            pass

    try:
        yield a, b, "Generate: Success"
    except:
        pass


def retry(
    model_name,
    models,
    text,
    chatbot,
    history,
    top_p,
    temperature,
    max_tokens,
    memory_k,
    is_kgqa,
    single_turn,
    is_dbqa,
    select_database,
    select_table,
    databases,
):
    logging.info("Retry...")
    if len(history) == 0:
        yield chatbot, history, "Empty context."
        return
    chatbot.pop()
    inputs = history.pop()[0]
    for x in predict(
        model_name,
        models,
        inputs,
        chatbot,
        history,
        top_p,
        temperature,
        max_tokens,
        memory_k,
        is_kgqa,
        single_turn,
        is_dbqa,
        select_database,
        select_table,
        databases,
    ):
        yield x


gr.Chatbot.postprocess = postprocess

with open("assets/custom.css", "r", encoding="utf-8") as f:
    customCSS = f.read()

with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
    history = gr.State([])
    user_question = gr.State("")

    with gr.Row():
        gr.HTML(title)
        status_display = gr.Markdown("Success", elem_id="status_display")

    gr.Markdown(description_top)

    with gr.Row(scale=1).style(equal_height=True):
        with gr.Column(scale=5):
            with gr.Row():
                chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%")
            with gr.Row():
                with gr.Column(scale=12):
                    user_input = gr.Textbox(
                        show_label=False, placeholder="Enter text"
                    ).style(container=False)
                with gr.Column(min_width=70, scale=1):
                    submitBtn = gr.Button("发送")
                with gr.Column(min_width=70, scale=1):
                    cancelBtn = gr.Button("停止")
            with gr.Row():
                emptyBtn = gr.Button(
                    "🧹 新的对话",
                )
                retryBtn = gr.Button("🔄 重新生成")
                delLastBtn = gr.Button("🗑️ 删除最旧对话")

        with gr.Column():
            with gr.Column(min_width=50, scale=1):
                with gr.Tab(label="模型"):
                    model_name = gr.Textbox(
                        placeholder="chatglm",
                        label="模型名称",
                    )
                    api_base = gr.Textbox(
                        placeholder="https://0.0.0.0:80/v1",
                        label="模型接口地址",
                    )
                    add_model = gr.Button("添加模型")
                    with gr.Accordion(open=False, label="所有模型配置"):
                        models = gr.Json()
                    single_turn = gr.Checkbox(label="使用单轮对话", value=False)
                    select_model = gr.Dropdown(
                        choices=[m[0] for m in models.value.items()] if models.value else [],
                        value=[m[0] for m in models.value.items()][0] if models.value else None,
                        label="选择模型",
                        interactive=True,
                    )

                with gr.Tab(label="知识库"):
                    is_kgqa = gr.Checkbox(
                        label="使用知识库问答",
                        value=False,
                        interactive=True,
                    )
                    gr.Markdown("""**基于本地知识库生成更加准确的回答!**""")
                    select_file = gr.Dropdown(
                        choices=file_list,
                        label="选择文件",
                        interactive=True,
                        value=file_list[0] if len(file_list) > 0 else None
                    )
                    file = gr.File(
                        label="上传文件",
                        visible=True,
                        file_types=['.txt', '.md', '.docx', '.pdf']
                    )
                    add_vs = gr.Button(value="添加到知识库")

                with gr.Tab(label="数据库"):
                    with gr.Accordion(open=False, label="数据库配置"):
                        db_user = gr.Textbox(
                            placeholder="root",
                            label="用户名",
                        )
                        db_password = gr.Textbox(
                            placeholder="password",
                            label="密码",
                            type="password"
                        )
                        db_host = gr.Textbox(
                            placeholder="0.0.0.0",
                            label="主机",
                        )
                        db_port = gr.Textbox(
                            placeholder="3306",
                            label="端口",
                        )
                        db_name = gr.Textbox(
                            placeholder="test",
                            label="数据库名称",
                        )
                    add_database = gr.Button("添加数据库")

                    with gr.Accordion(open=False, label="所有数据库配置"):
                        databases = gr.Json()
                    select_database = gr.Dropdown(
                        choices=[d[0] for d in databases.value.items()] if databases.value else [],
                        value=[d[0] for d in databases.value.items()][0] if databases.value else None,
                        interactive=True,
                        label="选择数据库"
                    )
                    select_table = gr.Dropdown(label="选择表", interactive=True, multiselect=True)
                    is_dbqa = gr.Checkbox(
                        label="使用数据库问答",
                        value=False,
                        interactive=True,
                    )

                with gr.Tab(label="参数"):
                    top_p = gr.Slider(
                        minimum=-0,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        interactive=True,
                        label="Top-p",
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=1,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    max_tokens = gr.Slider(
                        minimum=0,
                        maximum=512,
                        value=512,
                        step=8,
                        interactive=True,
                        label="Max Generation Tokens",
                    )
                    memory_k = gr.Slider(
                        minimum=0,
                        maximum=10,
                        value=5,
                        step=1,
                        interactive=True,
                        label="Max Memory Window Size",
                    )
                    chunk_size = gr.Slider(
                        minimum=100,
                        maximum=1000,
                        value=200,
                        step=100,
                        interactive=True,
                        label="Chunk Size",
                    )
                    chunk_overlap = gr.Slider(
                        minimum=0,
                        maximum=100,
                        value=0,
                        step=10,
                        interactive=True,
                        label="Chunk Overlap",
                    )

    gr.Markdown(description)

    add_model.click(
        add_llm,
        inputs=[model_name, api_base, models],
        outputs=[model_name, api_base, models, select_model],
    )

    add_database.click(
        add_db,
        inputs=[db_user, db_password, db_host, db_port, db_name, databases],
        outputs=[db_user, db_password, db_host, db_port, db_name, databases, select_database],
    )

    select_database.change(
        get_table_names,
        inputs=[select_database, databases],
        outputs=select_table,
    )

    file.upload(
        upload_file,
        inputs=file,
        outputs=select_file,
    )

    add_vs.click(
        add_vector_store,
        inputs=[select_file, select_model, models, chunk_size, chunk_overlap],
        outputs=status_display,
    )

    predict_args = dict(
        fn=predict,
        inputs=[
            select_model,
            models,
            user_question,
            chatbot,
            history,
            top_p,
            temperature,
            max_tokens,
            memory_k,
            is_kgqa,
            single_turn,
            is_dbqa,
            select_database,
            select_table,
            databases,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    retry_args = dict(
        fn=retry,
        inputs=[
            select_model,
            models,
            user_question,
            chatbot,
            history,
            top_p,
            temperature,
            max_tokens,
            memory_k,
            is_kgqa,
            single_turn,
            is_dbqa,
            select_database,
            select_table,
            databases,
        ],
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )

    reset_args = dict(fn=reset_textbox, inputs=[], outputs=[user_input, status_display])

    cancelBtn.click(cancel_outputing, [], [status_display])
    transfer_input_args = dict(
        fn=transfer_input,
        inputs=[user_input],
        outputs=[user_question, user_input, submitBtn, cancelBtn],
        show_progress=True,
    )

    user_input.submit(**transfer_input_args).then(**predict_args)

    submitBtn.click(**transfer_input_args).then(**predict_args)

    emptyBtn.click(
        reset_state,
        outputs=[chatbot, history, status_display],
        show_progress=True,
    )
    emptyBtn.click(**reset_args)

    retryBtn.click(**retry_args)

    delLastBtn.click(
        delete_last_conversation,
        [chatbot, history],
        [chatbot, history, status_display],
        show_progress=True,
    )

demo.title = "OpenLLM Chatbot 🚀 "

if __name__ == "__main__":
    reload_javascript()
    demo.queue(concurrency_count=CONCURRENT_COUNT).launch()