Last commit not found
"""Implementation derived from https://github.com/tloen/alpaca-lora""" | |
import sys | |
from pathlib import Path | |
# support running without installing as a package | |
wd = Path(__file__).parent.parent.resolve() | |
sys.path.append(str(wd)) | |
import torch | |
import requests | |
import json | |
from torch.utils.data import random_split | |
from lit_llama.tokenizer import Tokenizer | |
from tqdm import tqdm | |
DATA_FILE = "https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_cleaned_archive.json" | |
DATA_FILE_NAME = "alpaca_data_cleaned_archive.json" | |
IGNORE_INDEX = -1 | |
def prepare( | |
destination_path: Path = Path("data/alpaca"), | |
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"), | |
test_split_size: int = 2000, | |
max_seq_length: int = 256, | |
seed: int = 42, | |
mask_inputs: bool = False, # as in alpaca-lora | |
data_file_name: str = DATA_FILE_NAME | |
) -> None: | |
"""Prepare the Alpaca dataset for instruction tuning. | |
The output is a training and validation dataset saved as `train.pt` and `val.pt`, | |
which stores the preprocessed and tokenized prompts and labels. | |
""" | |
destination_path.mkdir(parents=True, exist_ok=True) | |
file_path = destination_path / data_file_name | |
download(file_path) | |
# TODO: If we don't have the Meta weights, where do we get the tokenizer from? | |
tokenizer = Tokenizer(tokenizer_path) | |
with open(file_path, "r") as file: | |
data = json.load(file) | |
# Partition the dataset into train and test | |
train_split_size = len(data) - test_split_size | |
train_set, test_set = random_split( | |
data, | |
lengths=(train_split_size, test_split_size), | |
generator=torch.Generator().manual_seed(seed), | |
) | |
train_set, test_set = list(train_set), list(test_set) | |
print(f"train has {len(train_set):,} samples") | |
print(f"val has {len(test_set):,} samples") | |
print("Processing train split ...") | |
train_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(train_set)] | |
torch.save(train_set, file_path.parent / "train.pt") | |
print("Processing test split ...") | |
test_set = [prepare_sample(sample, tokenizer, max_seq_length, mask_inputs) for sample in tqdm(test_set)] | |
torch.save(test_set, file_path.parent / "test.pt") | |
def download(file_path: Path): | |
"""Downloads the raw json data file and saves it in the given destination.""" | |
if file_path.exists(): | |
return | |
with open(file_path, "w") as f: | |
f.write(requests.get(DATA_FILE).text) | |
def prepare_sample(example: dict, tokenizer: Tokenizer, max_length: int, mask_inputs: bool = True): | |
"""Processes a single sample. | |
Each sample in the dataset consists of: | |
- instruction: A string describing the task | |
- input: A string holding a special input value for the instruction. | |
This only applies to some samples, and in others this is empty. | |
- output: The response string | |
This function processes this data to produce a prompt text and a label for | |
supervised training. The input text is formed as a single message including all | |
the instruction, the input (optional) and the response. | |
The label/target is the same message but can optionally have the instruction + input text | |
masked out (mask_inputs=True). | |
Finally, both the prompt and the label get tokenized. If desired, all tokens | |
in the label that correspond to the original input prompt get masked out (default). | |
""" | |
full_prompt = generate_prompt(example) | |
full_prompt_and_response = full_prompt + example["output"] | |
encoded_full_prompt = tokenize(tokenizer, full_prompt, max_length=max_length, eos=False) | |
encoded_full_prompt_and_response = tokenize(tokenizer, full_prompt_and_response, eos=True, max_length=max_length) | |
# The labels are the full prompt with response, but with the prompt masked out | |
labels = encoded_full_prompt_and_response.clone() | |
if mask_inputs: | |
labels[:len(encoded_full_prompt)] = IGNORE_INDEX | |
return {**example, "input_ids": encoded_full_prompt_and_response, "input_ids_no_response": encoded_full_prompt, "labels": labels} | |
def tokenize(tokenizer: Tokenizer, string: str, max_length: int, eos=True) -> torch.Tensor: | |
return tokenizer.encode(string, bos=True, eos=eos, max_length=max_length) | |
def generate_prompt(example): | |
"""Generates a standardized message to prompt the model with an instruction, optional input and a | |
'response' field.""" | |
if example["input"]: | |
return ( | |
"Below is an instruction that describes a task, paired with an input that provides further context. " | |
"Write a response that appropriately completes the request.\n\n" | |
f"### Instruction:\n{example['instruction']}\n\n### Input:\n{example['input']}\n\n### Response:" | |
) | |
return ( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request.\n\n" | |
f"### Instruction:\n{example['instruction']}\n\n### Response:" | |
) | |
if __name__ == "__main__": | |
from jsonargparse import CLI | |
CLI(prepare) | |