xuyingliKepler commited on
Commit
bc6c9fb
Β·
1 Parent(s): 613ac12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -69,10 +69,10 @@ def smaller_chunks_strategy(docs):
69
  retriever.vectorstore.add_documents(sub_docs)
70
  retriever.docstore.mset(list(zip(doc_ids, docs)))
71
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
72
- qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=memory)
73
- st.info(prompt, icon="🧐")
74
- result = qa({"question": prompt})
75
- st.success(result['answer'], icon="πŸ€–")
76
 
77
 
78
  def summary_strategy(docs):
@@ -101,10 +101,10 @@ def summary_strategy(docs):
101
  summary_docs = [Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(summaries)]
102
  retriever.vectorstore.add_documents(summary_docs)
103
  retriever.docstore.mset(list(zip(doc_ids, docs)))
104
- qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
105
- st.info(prompt, icon="🧐")
106
- result = qa({"question": prompt})
107
- st.success(result['answer'], icon="πŸ€–")
108
 
109
 
110
  def hypothetical_questions_strategy(docs):
@@ -153,10 +153,10 @@ def hypothetical_questions_strategy(docs):
153
  question_docs.extend([Document(page_content=s, metadata={id_key: doc_ids[i]}) for s in question_list])
154
  retriever.vectorstore.add_documents(question_docs)
155
  retriever.docstore.mset(list(zip(doc_ids, docs)))
156
- qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
157
- st.info(prompt, icon="🧐")
158
- result = qa({"question": prompt})
159
- st.success(result['answer'], icon="πŸ€–")
160
 
161
 
162
 
 
69
  retriever.vectorstore.add_documents(sub_docs)
70
  retriever.docstore.mset(list(zip(doc_ids, docs)))
71
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
72
+ qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=memory)
73
+ st.info(prompt, icon="🧐")
74
+ result = qa({"question": prompt})
75
+ st.success(result['answer'], icon="πŸ€–")
76
 
77
 
78
  def summary_strategy(docs):
 
101
  summary_docs = [Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(summaries)]
102
  retriever.vectorstore.add_documents(summary_docs)
103
  retriever.docstore.mset(list(zip(doc_ids, docs)))
104
+ qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
105
+ st.info(prompt, icon="🧐")
106
+ result = qa({"question": prompt})
107
+ st.success(result['answer'], icon="πŸ€–")
108
 
109
 
110
  def hypothetical_questions_strategy(docs):
 
153
  question_docs.extend([Document(page_content=s, metadata={id_key: doc_ids[i]}) for s in question_list])
154
  retriever.vectorstore.add_documents(question_docs)
155
  retriever.docstore.mset(list(zip(doc_ids, docs)))
156
+ qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
157
+ st.info(prompt, icon="🧐")
158
+ result = qa({"question": prompt})
159
+ st.success(result['answer'], icon="πŸ€–")
160
 
161
 
162