Spaces:
Sleeping
Sleeping
xuyingliKepler
commited on
Commit
Β·
f5114b7
1
Parent(s):
fd1f55d
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import uuid
|
3 |
+
import tempfile
|
4 |
+
import streamlit as st
|
5 |
+
import openai
|
6 |
+
from langchain.retrievers.multi_vector import MultiVectorRetriever
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.storage import InMemoryStore
|
11 |
+
from langchain.memory import ConversationBufferMemory
|
12 |
+
from langchain.llms import OpenAI
|
13 |
+
from langchain.chains import ConversationalRetrievalChain
|
14 |
+
from langchain.chat_models import ChatOpenAI
|
15 |
+
from langchain.prompts import ChatPromptTemplate
|
16 |
+
from langchain.schema.output_parser import StrOutputParser
|
17 |
+
import uuid
|
18 |
+
from langchain.schema.document import Document
|
19 |
+
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
20 |
+
from langchain.document_loaders import PyPDFLoader
|
21 |
+
|
22 |
+
# Set OpenAI API key
|
23 |
+
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
24 |
+
if not OPENAI_API_KEY:
|
25 |
+
st.error("OPENAI_API_KEY not set in environment variables!")
|
26 |
+
raise SystemExit
|
27 |
+
openai.api_key = OPENAI_API_KEY
|
28 |
+
|
29 |
+
|
30 |
+
def process_pdf(uploaded_file):
|
31 |
+
with st.spinner("Processing PDF..."):
|
32 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
33 |
+
tmp.write(uploaded_file.getvalue())
|
34 |
+
tmp_path = tmp.name
|
35 |
+
loaders = [PyPDFLoader(tmp_path)]
|
36 |
+
docs = []
|
37 |
+
for l in loaders:
|
38 |
+
docs.extend(l.load())
|
39 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
|
40 |
+
docs = text_splitter.split_documents(docs)
|
41 |
+
return docs
|
42 |
+
|
43 |
+
|
44 |
+
def smaller_chunks_strategy(docs):
|
45 |
+
with st.spinner('Processing with smaller_chunks_strategy'):
|
46 |
+
vectorstore = Chroma(
|
47 |
+
collection_name="full_documents",
|
48 |
+
embedding_function=OpenAIEmbeddings()
|
49 |
+
)
|
50 |
+
store = InMemoryStore()
|
51 |
+
id_key = "doc_id"
|
52 |
+
retriever = MultiVectorRetriever(
|
53 |
+
vectorstore=vectorstore,
|
54 |
+
docstore=store,
|
55 |
+
id_key=id_key,
|
56 |
+
)
|
57 |
+
doc_ids = [str(uuid.uuid4()) for _ in docs]
|
58 |
+
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
|
59 |
+
sub_docs = []
|
60 |
+
for i, doc in enumerate(docs):
|
61 |
+
_id = doc_ids[i]
|
62 |
+
_sub_docs = child_text_splitter.split_documents([doc])
|
63 |
+
for _doc in _sub_docs:
|
64 |
+
_doc.metadata[id_key] = _id
|
65 |
+
sub_docs.extend(_sub_docs)
|
66 |
+
|
67 |
+
retriever.vectorstore.add_documents(sub_docs)
|
68 |
+
retriever.docstore.mset(list(zip(doc_ids, docs)))
|
69 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
70 |
+
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=memory)
|
71 |
+
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="1")
|
72 |
+
if prompt:
|
73 |
+
st.info(prompt, icon="π§")
|
74 |
+
result = qa({"question": prompt})
|
75 |
+
st.success(result['answer'], icon="π€")
|
76 |
+
|
77 |
+
|
78 |
+
def summary_strategy(docs):
|
79 |
+
with st.spinner('Processing with summary_strategy'):
|
80 |
+
chain = (
|
81 |
+
{"doc": lambda x: x.page_content}
|
82 |
+
| ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
|
83 |
+
| ChatOpenAI(max_retries=0)
|
84 |
+
| StrOutputParser()
|
85 |
+
)
|
86 |
+
summaries = chain.batch(docs, {"max_concurrency": 5})
|
87 |
+
vectorstore = Chroma(
|
88 |
+
collection_name="summaries",
|
89 |
+
embedding_function= OpenAIEmbeddings()
|
90 |
+
)
|
91 |
+
store = InMemoryStore()
|
92 |
+
id_key = "doc_id"
|
93 |
+
retriever = MultiVectorRetriever(
|
94 |
+
vectorstore=vectorstore,
|
95 |
+
docstore=store,
|
96 |
+
id_key=id_key,
|
97 |
+
)
|
98 |
+
doc_ids = [str(uuid.uuid4()) for _ in docs]
|
99 |
+
summary_docs = [Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(summaries)]
|
100 |
+
retriever.vectorstore.add_documents(summary_docs)
|
101 |
+
retriever.docstore.mset(list(zip(doc_ids, docs)))
|
102 |
+
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
|
103 |
+
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="2")
|
104 |
+
if prompt:
|
105 |
+
st.info(prompt, icon="π§")
|
106 |
+
result = qa({"question": prompt})
|
107 |
+
st.success(result['answer'], icon="π€")
|
108 |
+
|
109 |
+
|
110 |
+
def hypothetical_questions_strategy(docs):
|
111 |
+
with st.spinner('Processing with hypothetical_questions_strategy'):
|
112 |
+
functions = [
|
113 |
+
{
|
114 |
+
"name": "hypothetical_questions",
|
115 |
+
"description": "Generate hypothetical questions",
|
116 |
+
"parameters": {
|
117 |
+
"type": "object",
|
118 |
+
"properties": {
|
119 |
+
"questions": {
|
120 |
+
"type": "array",
|
121 |
+
"items": {
|
122 |
+
"type": "string"
|
123 |
+
},
|
124 |
+
},
|
125 |
+
},
|
126 |
+
"required": ["questions"]
|
127 |
+
}
|
128 |
+
}
|
129 |
+
]
|
130 |
+
chain = (
|
131 |
+
{"doc": lambda x: x.page_content}
|
132 |
+
| ChatPromptTemplate.from_template("Generate a list of 3 hypothetical questions that the below document could be used to answer:\n\n{doc}")
|
133 |
+
| ChatOpenAI(max_retries=0, model="gpt-4").bind(functions=functions, function_call={"name": "hypothetical_questions"})
|
134 |
+
| JsonKeyOutputFunctionsParser(key_name="questions")
|
135 |
+
)
|
136 |
+
hypothetical_questions = chain.batch(docs, {"max_concurrency": 5})
|
137 |
+
vectorstore = Chroma(
|
138 |
+
collection_name="hypo-questions",
|
139 |
+
embedding_function=OpenAIEmbeddings()
|
140 |
+
)
|
141 |
+
store = InMemoryStore()
|
142 |
+
id_key = "doc_id"
|
143 |
+
retriever = MultiVectorRetriever(
|
144 |
+
vectorstore=vectorstore,
|
145 |
+
docstore=store,
|
146 |
+
id_key=id_key,
|
147 |
+
)
|
148 |
+
doc_ids = [str(uuid.uuid4()) for _ in docs]
|
149 |
+
question_docs = []
|
150 |
+
for i, question_list in enumerate(hypothetical_questions):
|
151 |
+
question_docs.extend([Document(page_content=s, metadata={id_key: doc_ids[i]}) for s in question_list])
|
152 |
+
retriever.vectorstore.add_documents(question_docs)
|
153 |
+
retriever.docstore.mset(list(zip(doc_ids, docs)))
|
154 |
+
qa = ConversationalRetrievalChain.from_llm(OpenAI(temperature=0), retriever, memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True))
|
155 |
+
prompt = st.text_input("Enter Your Question:", placeholder="Ask something", key="3")
|
156 |
+
if prompt:
|
157 |
+
st.info(prompt, icon="π§")
|
158 |
+
result = qa({"question": prompt})
|
159 |
+
st.success(result['answer'], icon="π€")
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
def app():
|
164 |
+
image_path = "icon.png"
|
165 |
+
st.sidebar.image(image_path, caption="icon", use_column_width=True)
|
166 |
+
st.title("VecDBCompare 0.0.1")
|
167 |
+
st.sidebar.markdown("""
|
168 |
+
# π **VecDBCompare: Your Vector DB Strategy Tester**
|
169 |
+
## π **What is it?**
|
170 |
+
VecDBCompare lets you evaluate and compare three vector database retrieval strategies in a snap!
|
171 |
+
## π€ **How to Use?**
|
172 |
+
1. **Upload a PDF** π
|
173 |
+
2. Get **Three QABots** π€π€π€, each with a different strategy.
|
174 |
+
3. **Ask questions** β and see how each bot responds differently.
|
175 |
+
4. **Decide** β
which strategy works best for you!
|
176 |
+
## π **Why VecDBCompare?**
|
177 |
+
- **Simple & Fast** β‘: Upload, ask, and compare!
|
178 |
+
- **Real-time Comparison** π: See strategies in action side-by-side.
|
179 |
+
- **Empower Your Choice** π‘: Pick the best strategy for your needs.
|
180 |
+
Dive in and discover with VecDBCompare! π
|
181 |
+
""")
|
182 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
|
183 |
+
if uploaded_file:
|
184 |
+
docs = process_pdf(uploaded_file)
|
185 |
+
option = st.selectbox(
|
186 |
+
"Which retrieval strategy would you like to use?",
|
187 |
+
("Smaller Chunks", "Summary", "Hypothetical Questions")
|
188 |
+
)
|
189 |
+
if option == 'Smaller Chunks':
|
190 |
+
smaller_chunks_strategy(docs)
|
191 |
+
elif option == 'Summary':
|
192 |
+
summary_strategy(docs)
|
193 |
+
elif option == 'Hypothetical Questions':
|
194 |
+
hypothetical_questions_strategy(docs)
|
195 |
+
|
196 |
+
|
197 |
+
if __name__ == "__main__":
|
198 |
+
st.set_page_config(layout="wide")
|
199 |
+
app()
|