nexaagent / streamlit_test_catch.py
xuyingliKepler's picture
Upload 6 files
4c9dd05
raw
history blame
6.43 kB
import streamlit as st
import os
import autogen
import base64
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
import io
import sys
import tempfile
import openai
import multiprocessing
import autogen.agentchat.user_proxy_agent as upa
class OutputCapture:
def __init__(self):
self.contents = []
def write(self, data):
self.contents.append(data)
def flush(self):
pass
def get_output_as_string(self):
return ''.join(self.contents)
class ExtendedUserProxyAgent(upa.UserProxyAgent):
def __init__(self, *args, log_file="interaction_log.txt", **kwargs):
super().__init__(*args, **kwargs)
self.log_file = log_file
def log_interaction(self, message):
with open(self.log_file, "a") as f:
f.write(message + "\n")
def get_human_input(self, *args, **kwargs):
human_input = super().get_human_input(*args, **kwargs)
self.log_interaction(f"Human input: {human_input}")
return human_input
# Example usage:
config_list = [
{
"model": "gpt-4",
"api_key": "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",
}
]
gpt4_api_key = config_list[0]["api_key"]
os.environ['OPENAI_API_KEY'] = gpt4_api_key
openai.api_key = os.environ["OPENAI_API_KEY"]
def build_vector_store(pdf_path, chunk_size=1000):
loaders = [PyPDFLoader(pdf_path)]
docs = []
for l in loaders:
docs.extend(l.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size)
docs = text_splitter.split_documents(docs)
vectorstore = Chroma(
collection_name="full_documents",
embedding_function=OpenAIEmbeddings()
)
vectorstore.add_documents(docs)
return vectorstore
def setup_qa_chain(vectorstore):
qa = ConversationalRetrievalChain.from_llm(
OpenAI(temperature=0),
vectorstore.as_retriever(),
memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True)
)
return qa
def get_image_as_base64_string(path):
with open(path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
def answer_uniswap_question(question, qa_chain):
response = qa_chain({"question": question})
return response["answer"]
def setup_agents(config_list, answer_function):
llm_config = {
"request_timeout": 600,
"seed": 42,
"config_list": config_list,
"temperature": 0,
"functions": [
{
"name": "answer_uniswap_question",
"description": "Answer any Uniswap related questions",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question to ask in relation to Uniswap protocol",
}
},
"required": ["question"],
},
}
],
}
assistant = autogen.AssistantAgent(name="assistant", llm_config=llm_config)
user_proxy = ExtendedUserProxyAgent(
name="user_proxy",
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={"work_dir": "."},
llm_config=llm_config,
system_message="""Reply TERMINATE if the task has been solved at full satisfaction.
Otherwise, reply CONTINUE, or the reason why the task is not solved yet.""",
function_map={"answer_uniswap_question": answer_function}
)
return assistant, user_proxy
def initiate_task(user_proxy, assistant, user_question):
user_proxy.initiate_chat(
assistant,
message= user_question
)
def initiate_task_process(queue, tmp_path, user_question):
loaders = [PyPDFLoader(tmp_path)]
vectorstore = build_vector_store(tmp_path)
qa_chain = setup_qa_chain(vectorstore)
assistant, user_proxy = setup_agents(config_list, lambda q: answer_uniswap_question(q, qa_chain))
output_capture = OutputCapture()
sys.stdout = output_capture
initiate_task(user_proxy, assistant, user_question)
queue.put(output_capture.get_output_as_string())
def app():
st.title("NexaAgent 0.0.1")
# Sidebar introduction
st.sidebar.header("About NexaAgent 0.0.1")
st.sidebar.markdown("""
πŸš€ **Introducing NexaAgent 0.0.1!**
A highly efficient PDF tool for all your needs.
πŸ“„ Upload any PDF, no matter its size or the task type.
βœ… Guaranteed accuracy, significantly reducing any discrepancies.
πŸ”§ Empowered by:
- **AutoGen** πŸ› οΈ
- **LangChain** 🌐
- **chromadb** πŸ—„οΈ
""")
image_path = "1.png"
st.sidebar.image(image_path, caption="Your Caption Here", use_column_width=True)
# Create left and right columns
col1, col2 = st.columns(2)
with col1:
# Upload PDF file
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file:
with st.spinner("Processing PDF..."):
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
# User input for question
user_question = st.text_area("Enter your task:", height=300)
if user_question:
with st.spinner("Fetching the answer..."):
# 使用进程ζ₯ζ‰§θ‘Œε―θƒ½εΌ•ε‘ι”™θ――ηš„δ»£η 
queue = multiprocessing.Queue()
process = multiprocessing.Process(target=initiate_task_process, args=(queue, tmp_path, user_question))
process.start()
process.join()
# δ»Žι˜Ÿεˆ—δΈ­θŽ·ε–η»“ζžœ
captured_output = queue.get()
col2.text_area("", value=captured_output, height=600)
if __name__ == "__main__":
st.set_page_config(layout="wide")
app()