File size: 9,503 Bytes
6fb61ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from colorful import *

@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port):
    import glob
    import os

    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import fitz
        import tiktoken
    except:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 清空历史,以免输入溢出
    history = []

    # 检测输入参数,如没有给定输入参数,直接退出
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "":
            txt = '空空如也的输入栏'
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 搜索需要处理的文件清单
    file_manifest = [f for f in glob.glob(
        f'{project_folder}/**/*.pdf', recursive=True)]

    # 如果没找到任何文件
    if len(file_manifest) == 0:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
        return

    # 开始正式执行任务
    yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt)


def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt):
    import os
    import copy
    import tiktoken
    TOKEN_LIMIT_PER_FRAGMENT = 1280
    generated_conclusion_files = []
    generated_html_files = []
    for index, fp in enumerate(file_manifest):

        # 读取PDF文件
        file_content, page_one = read_and_clean_pdf_text(fp)
        file_content = file_content.encode('utf-8', 'ignore').decode()   # avoid reading non-utf8 chars
        page_one = str(page_one).encode('utf-8', 'ignore').decode()      # avoid reading non-utf8 chars
        # 递归地切割PDF文件
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
        from request_llm.bridge_all import model_info
        enc = model_info["gpt-3.5-turbo"]['tokenizer']
        def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
        paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)

        # 为了更好的效果,我们剥离Introduction之后的部分(如果有)
        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
        
        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
            llm_kwargs=llm_kwargs,
            chatbot=chatbot, history=[],
            sys_prompt="Your job is to collect information from materials。",
        )

        # 多线,翻译
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array=[
                f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
            inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')}  \n---\n 翻译:\n " for frag in paper_fragments],
            llm_kwargs=llm_kwargs,
            chatbot=chatbot,
            history_array=[[paper_meta] for _ in paper_fragments],
            sys_prompt_array=[
                "请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
            # max_workers=5  # OpenAI所允许的最大并行过载
        )
        gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
        # 整理报告的格式
        for i,k in enumerate(gpt_response_collection_md): 
            if i%2==0:
                gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')}  \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
            else:
                gpt_response_collection_md[i] = gpt_response_collection_md[i]
        final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
        final.extend(gpt_response_collection_md)
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
        res = write_results_to_file(final, file_name=create_report_file_name)

        # 更新UI
        generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
        chatbot.append((f"{fp}完成了吗?", res))
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面

        # write html
        try:
            ch = construct_html() 
            orig = ""
            trans = ""
            gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
            for i,k in enumerate(gpt_response_collection_html): 
                if i%2==0:
                    gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
                else:
                    gpt_response_collection_html[i] = gpt_response_collection_html[i]
            final = ["论文概况", paper_meta_info.replace('# ', '### '),  "二、论文翻译",  ""]
            final.extend(gpt_response_collection_html)
            for i, k in enumerate(final): 
                if i%2==0:
                    orig = k
                if i%2==1:
                    trans = k
                    ch.add_row(a=orig, b=trans)
            create_report_file_name = f"{os.path.basename(fp)}.trans.html"
            ch.save_file(create_report_file_name)
            generated_html_files.append(f'./gpt_log/{create_report_file_name}')
        except:
            from toolbox import trimmed_format_exc
            print('writing html result failed:', trimmed_format_exc())

    # 准备文件的下载
    import shutil
    for pdf_path in generated_conclusion_files:
        # 重命名文件
        rename_file = f'./gpt_log/翻译-{os.path.basename(pdf_path)}'
        if os.path.exists(rename_file):
            os.remove(rename_file)
        shutil.copyfile(pdf_path, rename_file)
        if os.path.exists(pdf_path):
            os.remove(pdf_path)
    for html_path in generated_html_files:
        # 重命名文件
        rename_file = f'./gpt_log/翻译-{os.path.basename(html_path)}'
        if os.path.exists(rename_file):
            os.remove(rename_file)
        shutil.copyfile(html_path, rename_file)
        if os.path.exists(html_path):
            os.remove(html_path)
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面


class construct_html():
    def __init__(self) -> None:
        self.css = """
.row {
  display: flex;
  flex-wrap: wrap;
}

.column {
  flex: 1;
  padding: 10px;
}

.table-header {
  font-weight: bold;
  border-bottom: 1px solid black;
}

.table-row {
  border-bottom: 1px solid lightgray;
}

.table-cell {
  padding: 5px;
}
        """
        self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'


    def add_row(self, a, b):
        tmp = """
<div class="row table-row">
    <div class="column table-cell">REPLACE_A</div>
    <div class="column table-cell">REPLACE_B</div>
</div>
        """
        from toolbox import markdown_convertion
        tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
        tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
        self.html_string += tmp


    def save_file(self, file_name):
        with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f:
            f.write(self.html_string.encode('utf-8', 'ignore').decode())