File size: 4,030 Bytes
1d42b83
 
 
 
 
 
 
 
 
 
 
 
c431f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d42b83
 
c431f44
1d42b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c431f44
 
 
1d42b83
 
c431f44
1d42b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c431f44
 
 
 
 
 
 
 
1d42b83
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import string
import gradio as gr
import requests
import torch


from transformers import BlipForQuestionAnswering, BlipProcessor

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
model_vqa = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to(device)

from transformers import BlipProcessor, Blip2ForConditionalGeneration

cap_processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xl")
cap_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl")



def caption(input_image):
    inputs = processor(input_image, return_tensors="pt")
    inputs["num_beams"] = 4
    inputs['num_return_sequences'] =4
    out = model.generate(**inputs)
    return "\n".join(processor.decode(out[0], skip_special_tokens=True))
def gpt3(input_text):
    response = openai.Completion.create(
    engine="text-davinci-003",
    prompt=input_text,
    max_tokens=10,
    n=1,
    stop=None,
    temperature=0.7,
    )
    answer = response.choices[0].text.strip()
    return answer

    
def inference_chat(input_image,input_text):
    inputs = processor(images=input_image, text=input_text,return_tensors="pt")
    inputs["max_length"] = 10
    inputs["num_beams"] = 5
    inputs['num_return_sequences'] =4
    out = model_vqa.generate(**inputs)
    return "\n".join(processor.batch_decode(out, skip_special_tokens=True))
    
with gr.Blocks(
    css="""
    .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
    #component-21 > div.wrap.svelte-w6rprc {height: 600px;}
    """
) as iface:
    state = gr.State([])
    #caption_output = None
    #gr.Markdown(title)
    #gr.Markdown(description)
    #gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil")
            with gr.Row():
                with gr.Column(scale=1):
                    chat_input = gr.Textbox(lines=1, label="VQA Input(问题输入)")
                    with gr.Row():
                        clear_button = gr.Button(value="Clear", interactive=True)
                        submit_button = gr.Button(
                            value="Submit", interactive=True, variant="primary"
                        )
                    cap_submit_button = gr.Button(
                            value="Submit", interactive=True, variant="primary"
                        )
        with gr.Column():
            caption_output = gr.Textbox(lines=0, label="VQA Output(模型答案输出)")
            caption_output_v1 = gr.Textbox(lines=0, label="Caption Output(模型caption输出)")
            
        image_input.change(
            lambda: ("", "", []),
            [],
            [ caption_output, state],
            queue=False,
        )
        chat_input.submit(
                    inference_chat,
                    [
                        image_input,
                        chat_input,
                    ],
                    [ caption_output],
                )
        clear_button.click(
                        lambda: ("", [], []),
                        [],
                        [chat_input,  state],
                        queue=False,
                    )
        submit_button.click(
                        inference_chat,
                        [
                            image_input,
                            chat_input,
                        ],
                        [caption_output],
                    )
        cap_submit_button.click(
                        caption,
                        [
                            image_input,
                   
                        ],
                        [caption_output_v1],
                    )

   # examples = gr.Examples(
   #     examples=examples,
   #     inputs=[image_input, chat_input],
  #  )

iface.queue(concurrency_count=1, api_open=False, max_size=10)
iface.launch(enable_queue=True)