Spaces:
Runtime error
Runtime error
File size: 27,817 Bytes
e9fbb59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch VLE model."""
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ModelOutput
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.auto.modeling_auto import AutoModel
from transformers.models.bert.modeling_bert import BertAttention, BertIntermediate, BertOutput, apply_chunking_to_forward
from transformers.models.clip.modeling_clip import CLIPOutput, CLIPVisionConfig, CLIPVisionModel
from transformers.models.deberta_v2.modeling_deberta_v2 import DebertaV2OnlyMLMHead
from .configuration_vle import VLEConfig
from dataclasses import dataclass
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VLEConfig"
@dataclass
class VLEModelOutput(ModelOutput):
pooler_output: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
@dataclass
class VLEForITMOutput(ModelOutput):
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
@dataclass
class VLEForPBCOutput(ModelOutput):
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
@dataclass
class VLEForMLMOutput(ModelOutput):
loss: torch.FloatTensor = None
logits: torch.FloatTensor = None
@dataclass
class VLEForVQAOutput(ModelOutput):
loss : torch.FloatTensor = None
logits: torch.FloatTensor = None
class ITMHead(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.fc = nn.Linear(hidden_size, 2)
def forward(self, x):
x = self.fc(x)
return x
def extend_position_embedding(state_dict, patch_size, after):
"""
modify state_dict in-place for longer position embeddings
"""
keys = {}
for k,v in state_dict.items():
if k.endswith('vision_model.embeddings.position_embedding.weight'):
assert k not in keys
keys['pe'] = (k,v)
if k.endswith('vision_model.embeddings.position_ids'):
assert k not in keys
keys['pi'] = (k,v)
pe_weight = keys['pe'][1]
position_length_before = pe_weight.shape[0]
embed_dim = pe_weight.shape[1]
grid_before = position_length_before - 1
position_length_after = (after // patch_size) ** 2 + 1
grid_after = position_length_after - 1
new_pe_weight = pe_weight[1:].reshape((grid_before,grid_before,-1))
new_pe_weight = torch.nn.functional.interpolate(
new_pe_weight.permute(2,0,1).unsqueeze(0),
size = (grid_after,grid_after), mode = 'bicubic')
new_pe_weight = new_pe_weight.squeeze(0).permute(1,2,0).reshape(grid_after*grid_after, -1)
new_pe_weight = torch.cat((pe_weight[0:1],new_pe_weight), dim=0)
assert new_pe_weight.shape == (grid_after*grid_after + 1, embed_dim)
state_dict[keys['pe'][0]] = new_pe_weight
state_dict[keys['pi'][0]] = torch.arange(grid_after*grid_after + 1).unsqueeze(0)
return state_dict
class Pooler(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertCrossLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
self.crossattention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
encoder_hidden_states,
attention_mask=None,
encoder_attention_mask=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = None #past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask=None,
output_attentions=output_attentions,
past_key_value=None,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
None,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class VLEPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization.
"""
config_class = VLEConfig
base_model_prefix = "vle"
supports_gradient_checkpointing = False
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
''' TODO checkpointing
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BertEncoder):
module.gradient_checkpointing = value
'''
class VLEModel(VLEPreTrainedModel):
def __init__(
self,
config: Optional[VLEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
if config is None and (vision_model is None or text_model is None):
raise ValueError("Either a configuration or an vision and a text model has to be provided")
if config is None:
config = VLEConfig(vision_model.config, text_model.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if vision_model is None:
if isinstance(config.vision_config, CLIPVisionConfig):
vision_model = CLIPVisionModel(config.vision_config)
else:
vision_model = AutoModel.from_config(config.vision_config)
if text_model is None:
text_model = AutoModel.from_config(config.text_config)
self.vision_model = vision_model
self.text_model = text_model
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.vision_model.config = self.config.vision_config
self.text_model.config = self.config.text_config
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.coattention_dim = config.hidden_size
# add projection layers
self.text_projection_layer = nn.Linear(self.text_embed_dim, self.coattention_dim)
self.image_projection_layer = nn.Linear(self.vision_embed_dim, self.coattention_dim)
#self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
self.token_type_embeddings = nn.Embedding(config.num_token_types, config.hidden_size)
self.cross_modal_image_layers = nn.ModuleList([BertCrossLayer(config) for _ in range(config.num_hidden_layers)])
self.cross_modal_text_layers = nn.ModuleList([BertCrossLayer(config) for _ in range(config.num_hidden_layers)])
self.cross_modal_image_pooler = Pooler(config.hidden_size)
self.cross_modal_text_pooler = Pooler(config.hidden_size)
# Initialize weights and apply final processing
self.token_type_embeddings.apply(self._init_weights)
self.cross_modal_image_layers.apply(self._init_weights)
self.cross_modal_text_layers.apply(self._init_weights)
self.cross_modal_image_pooler.apply(self._init_weights)
self.cross_modal_text_pooler.apply(self._init_weights)
if hasattr(self,"text_projection_layer"):
self.text_projection_layer.apply(self._init_weights)
if hasattr(self,"image_projection_layer"):
self.image_projection_layer.apply(self._init_weights)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
patch_ids = None,
return_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], VLEModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
return_dict=return_dict,
)
image_embeds = self.vision_model.vision_model.post_layernorm(vision_outputs[0]) # last_hidden_state
image_embeds = self.image_projection_layer(image_embeds)
text_embeds = text_outputs[0] # last_hidden_state
text_embeds = self.text_projection_layer(text_embeds)
if patch_ids is not None:
raise NotImplementedError #TODO
image_masks = torch.ones((image_embeds.size(0), image_embeds.size(1)), dtype=torch.long, device=image_embeds.device)
extend_image_masks = self.text_model.get_extended_attention_mask(image_masks, image_masks.size())
image_embeds = image_embeds + self.token_type_embeddings(torch.full_like(image_masks, 1)) # image_token_type_idx=1 TODO use_vcr_token_type_embedding
extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, attention_mask.size())
text_embeds = text_embeds + self.token_type_embeddings(torch.zeros_like(attention_mask))
x, y = text_embeds, image_embeds
for text_layer, image_layer in zip(self.cross_modal_text_layers, self.cross_modal_image_layers):
x1 = text_layer(x, y, extend_text_masks, extend_image_masks)
y1 = image_layer(y, x, extend_image_masks, extend_text_masks)
x, y = x1[0], y1[0]
text_embeds, image_embeds = x, y
text_pooler_output = self.cross_modal_text_pooler(x)
image_pooler_output = self.cross_modal_image_pooler(y)
pooler_output = torch.cat([text_pooler_output, image_pooler_output], dim=-1)
if not return_dict:
output = (pooler_output, text_embeds, image_embeds)
return output
return VLEModelOutput(
pooler_output = pooler_output,
text_embeds = text_embeds,
image_embeds = image_embeds
)
@classmethod
def from_pretrained(cls, *args, **kwargs):
# At the moment fast initialization is not supported
# for composite models
kwargs["_fast_init"] = False
return super().from_pretrained(*args, **kwargs)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove vision, text kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the vision and text model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
if "config" not in kwargs_vision:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_model = CLIPVisionModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
else:
kwargs_vision["config"] = vision_config
vision_model = AutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = AutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
config = VLEConfig(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config=config, vision_model=vision_model, text_model=text_model)
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The coattention layers and projection layers are newly initialized. You should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
return model
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
#output_attentions=output_attentions,
#output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return text_outputs[0] # last_hidden_state
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`CLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import VLEModel, AutoImageProcessor
>>> model = VLEModel.from_pretrained("clip-italian/clip-italian")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
#output_attentions=output_attentions,
#output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = self.vision_model.vision_model.post_layernorm(vision_outputs[0])
return last_hidden_state
def get_input_embeddings(self):
return self.text_model.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.text_model.embeddings.word_embeddings = new_embeddings
class VLEForVQA(VLEPreTrainedModel):
def __init__(
self,
config: Optional[VLEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
super().__init__(config)
self.vle = VLEModel(config, vision_model, text_model)
hidden_size = config.hidden_size
self.num_vqa_labels = len(self.config.id2label)
self.vqa_classifier = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size * 2),
nn.LayerNorm(hidden_size * 2),
nn.GELU(),
nn.Linear(hidden_size * 2, self.num_vqa_labels),
)
self.vqa_classifier.apply(self._init_weights)
def forward(self,
input_ids: Optional[torch.LongTensor],
pixel_values: Optional[torch.FloatTensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
patch_ids = None,
vqa_labels = None,
vqa_scores = None,
return_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], VLEForVQAOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
vle_output = self.vle(
input_ids = input_ids,
pixel_values = pixel_values,
attention_mask = attention_mask,
position_ids = position_ids,
token_type_ids = token_type_ids,
patch_ids = patch_ids,)
pooler_output = vle_output[0]
vqa_logits = self.vqa_classifier(pooler_output)
vqa_loss = None
if return_loss and vqa_labels is not None and vqa_scores is not None:
vqa_targets = torch.zeros(len(vqa_logits), self.num_vqa_labels,device=vqa_logits.device)
for i, (_label, _score) in enumerate(zip(vqa_labels, vqa_scores)):
for l, s in zip(_label, _score):
vqa_targets[i, l] = s
vqa_loss = F.binary_cross_entropy_with_logits(vqa_logits, vqa_targets) * vqa_targets.shape[1]
# https://github.com/jnhwkim/ban-vqa/blob/master/train.py#L19
if not return_dict:
output = (vqa_logits,)
return ((vqa_loss,) + output) if vqa_loss is not None else output
return VLEForVQAOutput(
loss = vqa_loss,
logits = vqa_logits
)
class VLEForITM(VLEPreTrainedModel):
def __init__(
self,
config: Optional[VLEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
super().__init__(config)
self.vle = VLEModel(config, vision_model, text_model)
hidden_size = config.hidden_size
self.itm_score = ITMHead(hidden_size*2)
self.itm_score.apply(self._init_weights)
def forward(self,
input_ids: Optional[torch.LongTensor],
pixel_values: Optional[torch.FloatTensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
patch_ids = None,
itm_labels = None,
return_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], VLEForITMOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
vle_output = self.vle(
input_ids = input_ids,
pixel_values = pixel_values,
attention_mask = attention_mask,
position_ids = position_ids,
token_type_ids = token_type_ids,
patch_ids = patch_ids,)
pooler_output = vle_output[0]
itm_logits = self.itm_score(pooler_output)
itm_loss = None
if return_loss and itm_labels is not None:
itm_loss = nn.functional.cross_entropy(itm_logits, torch.tensor(itm_labels).long().to(itm_logits.device))
if not return_dict:
output = (itm_logits,)
return ((itm_loss,) + output) if itm_loss is not None else output
return VLEForITMOutput(loss = itm_loss, logits = itm_logits)
class VLEForPBC(VLEPreTrainedModel):
def __init__(
self,
config: Optional[VLEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
super().__init__(config)
self.vle = VLEModel(config, vision_model, text_model)
hidden_size = config.hidden_size
self.pbc_classifier = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.LayerNorm(hidden_size),
nn.GELU(),
nn.Linear(hidden_size, 2),
)
self.pbc_classifier.apply(self._init_weights)
def forward(self,
input_ids: Optional[torch.LongTensor],
pixel_values: Optional[torch.FloatTensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
patch_ids = None,
pbc_labels = None,
return_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], VLEForPBCOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
vle_output = self.vle(
input_ids = input_ids,
pixel_values = pixel_values,
attention_mask = attention_mask,
position_ids = position_ids,
token_type_ids = token_type_ids,
patch_ids = patch_ids,)
image_embeds = vle_output['image_embeds']
pbc_logits = self.pbc_classifier(image_embeds[:,1:,:])
pbc_loss = None
if return_loss and pbc_labels is not None:
pbc_loss = F.cross_entropy(pbc_logits, torch.tensor(pbc_labels).long().to(pbc_logits.device))
if not return_dict:
output = (pbc_logits,)
return ((pbc_loss,) + output) if pbc_loss is not None else output
return VLEForPBCOutput(loss = pbc_loss, logits = pbc_logits)
class VLEForMLM(VLEPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"mlm_score.1.predictions.decoder.weight",r"mlm_score.1.predictions.decoder.bias"]
def __init__(
self,
config: Optional[VLEConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
super().__init__(config)
self.vle = VLEModel(config, vision_model, text_model)
hidden_size = config.hidden_size
mlm_head = DebertaV2OnlyMLMHead(self.config.text_config)
mlm_transform = nn.Linear(hidden_size, self.config.text_config.hidden_size)
self.mlm_score = nn.Sequential(
mlm_transform,
mlm_head,
)
def forward(self,
input_ids: Optional[torch.LongTensor],
pixel_values: Optional[torch.FloatTensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
patch_ids = None,
mlm_labels = None,
return_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], VLEForMLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.return_dict
vle_output = self.vle(
input_ids = input_ids,
pixel_values = pixel_values,
attention_mask = attention_mask,
position_ids = position_ids,
token_type_ids = token_type_ids,
patch_ids = patch_ids,)
text_feats = vle_output.text_embeds
mlm_logits = self.mlm_score(text_feats)
mlm_loss = None
if return_loss and mlm_labels is not None:
mlm_loss = F.cross_entropy(
mlm_logits.view(-1, self.config.text_config.vocab_size),
mlm_labels.view(-1),
ignore_index=-100,
)
if not return_dict:
output = (mlm_logits,)
return ((mlm_loss,) + output) if mlm_loss is not None else output
return VLEForMLMOutput(loss = mlm_loss, logits = mlm_logits)
def get_output_embeddings(self):
return self.mlm_score[1].predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.mlm_score[1].predictions.decoder = new_embeddings |