|
from configs.model_config import * |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
import nltk |
|
from vectorstores import MyFAISS |
|
from chains.local_doc_qa import load_file |
|
|
|
|
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path |
|
|
|
if __name__ == "__main__": |
|
filepath = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), |
|
"knowledge_base", "samples", "content", "test.txt") |
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], |
|
model_kwargs={'device': EMBEDDING_DEVICE}) |
|
|
|
docs = load_file(filepath, using_zh_title_enhance=True) |
|
vector_store = MyFAISS.from_documents(docs, embeddings) |
|
query = "指令提示技术有什么示例" |
|
search_result = vector_store.similarity_search(query) |
|
print(search_result) |
|
pass |
|
|