Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 1. Install and Import Baseline Dependencies
|
2 |
+
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import requests
|
5 |
+
import re
|
6 |
+
from transformers import pipeline
|
7 |
+
import csv
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
st.title('Stocks Analysis Machine')
|
11 |
+
|
12 |
+
x = st.slider('Select a value')
|
13 |
+
st.write(x, 'squared is', x * x)
|
14 |
+
|
15 |
+
|
16 |
+
# 2. Setup Model
|
17 |
+
model_name = "human-centered-summarization/financial-summarization-pegasus"
|
18 |
+
tokenizer = PegasusTokenizer.from_pretrained(model_name)
|
19 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name)
|
20 |
+
|
21 |
+
# 3. Setup Pipeline
|
22 |
+
monitored_tickers = ['ETH']
|
23 |
+
|
24 |
+
# 4.1. Search for Stock News using Google and Yahoo Finance
|
25 |
+
print('Searching for stock news for', monitored_tickers)
|
26 |
+
def search_for_stock_news_links(ticker):
|
27 |
+
search_url = 'https://www.google.com/search?q=yahoo+finance+{}&tbm=nws'.format(ticker)
|
28 |
+
r = requests.get(search_url)
|
29 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
30 |
+
atags = soup.find_all('a')
|
31 |
+
hrefs = [link['href'] for link in atags]
|
32 |
+
return hrefs
|
33 |
+
|
34 |
+
raw_urls = {ticker:search_for_stock_news_links(ticker) for ticker in monitored_tickers}
|
35 |
+
|
36 |
+
# 4.2. Strip out unwanted URLs
|
37 |
+
print('Cleaning URLs.')
|
38 |
+
exclude_list = ['maps', 'policies', 'preferences', 'accounts', 'support']
|
39 |
+
def strip_unwanted_urls(urls, exclude_list):
|
40 |
+
val = []
|
41 |
+
for url in urls:
|
42 |
+
if 'https://' in url and not any(exc in url for exc in exclude_list):
|
43 |
+
res = re.findall(r'(https?://\S+)', url)[0].split('&')[0]
|
44 |
+
val.append(res)
|
45 |
+
return list(set(val))
|
46 |
+
|
47 |
+
cleaned_urls = {ticker:strip_unwanted_urls(raw_urls[ticker] , exclude_list) for ticker in monitored_tickers}
|
48 |
+
|
49 |
+
# 4.3. Search and Scrape Cleaned URLs
|
50 |
+
print('Scraping news links.')
|
51 |
+
def scrape_and_process(URLs):
|
52 |
+
ARTICLES = []
|
53 |
+
for url in URLs:
|
54 |
+
r = requests.get(url)
|
55 |
+
soup = BeautifulSoup(r.text, 'html.parser')
|
56 |
+
results = soup.find_all('p')
|
57 |
+
text = [res.text for res in results]
|
58 |
+
words = ' '.join(text).split(' ')[:350]
|
59 |
+
ARTICLE = ' '.join(words)
|
60 |
+
ARTICLES.append(ARTICLE)
|
61 |
+
return ARTICLES
|
62 |
+
articles = {ticker:scrape_and_process(cleaned_urls[ticker]) for ticker in monitored_tickers}
|
63 |
+
|
64 |
+
# 4.4. Summarise all Articles
|
65 |
+
print('Summarizing articles.')
|
66 |
+
def summarize(articles):
|
67 |
+
summaries = []
|
68 |
+
for article in articles:
|
69 |
+
input_ids = tokenizer.encode(article, return_tensors="pt")
|
70 |
+
output = model.generate(input_ids, max_length=55, num_beams=5, early_stopping=True)
|
71 |
+
summary = tokenizer.decode(output[0], skip_special_tokens=True)
|
72 |
+
summaries.append(summary)
|
73 |
+
return summaries
|
74 |
+
|
75 |
+
summaries = {ticker:summarize(articles[ticker]) for ticker in monitored_tickers}
|
76 |
+
|
77 |
+
# 5. Adding Sentiment Analysis
|
78 |
+
print('Calculating sentiment.')
|
79 |
+
sentiment = pipeline("sentiment-analysis")
|
80 |
+
scores = {ticker:sentiment(summaries[ticker]) for ticker in monitored_tickers}
|
81 |
+
|
82 |
+
# # 6. Exporting Results
|
83 |
+
print('Exporting results')
|
84 |
+
def create_output_array(summaries, scores, urls):
|
85 |
+
output = []
|
86 |
+
for ticker in monitored_tickers:
|
87 |
+
for counter in range(len(summaries[ticker])):
|
88 |
+
output_this = [
|
89 |
+
ticker,
|
90 |
+
summaries[ticker][counter],
|
91 |
+
scores[ticker][counter]['label'],
|
92 |
+
scores[ticker][counter]['score'],
|
93 |
+
urls[ticker][counter]
|
94 |
+
]
|
95 |
+
output.append(output_this)
|
96 |
+
return output
|
97 |
+
final_output = create_output_array(summaries, scores, cleaned_urls)
|
98 |
+
final_output.insert(0, ['Ticker','Summary', 'Sentiment', 'Sentiment Score', 'URL'])
|
99 |
+
|
100 |
+
with open('ethsummaries.csv', mode='w', newline='') as f:
|
101 |
+
csv_writer = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
|
102 |
+
csv_writer.writerows(final_output)
|