import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results import yaml from sklearn.metrics import cohen_kappa_score import numpy as np TYPES = ["str", "number", "number", "number", "number", "number"] def read_json(file_path: str) -> list[dict]: """ Read a JSON/JSONL file and return its contents as a list of dictionaries. Parameters: file_path (str): The path to the JSON file. Returns: list[dict]: The contents of the JSON file as a list of dictionaries. """ try: with open(file_path) as f: data = [json.loads(x) for x in f] return data except json.decoder.JSONDecodeError: with open(file_path) as f: data = json.load(f) return data def pairwise_compare( evaluator1_dir: str, evaluator2_dir: str, ) -> tuple[float, float]: """ Compare pairwise evaluators. Args: evaluator1_dir: The directory containing the responses from the first evaluator. evaluator2_dir: The directory containing the responses from the second evaluator. Returns: None """ evaluator1_responses = read_json(evaluator1_dir) evaluator2_responses = read_json(evaluator2_dir) assert len(evaluator1_responses) == len(evaluator2_responses) evaluator1_winners = np.array( [response["winner"] for response in evaluator1_responses] ) evaluator2_winners = np.array( [response["winner"] for response in evaluator2_responses] ) acc = (evaluator1_winners == evaluator2_winners).mean().item() agreement = cohen_kappa_score(evaluator1_winners, evaluator2_winners) return acc, agreement def pairwise_meta_eval( human_dir: str, model_dir: str, model_dir_swap: str ) -> dict[float]: """ Evaluate a pairwise evaluator. Args: human_dir: The directory containing the human responses. model_dir: The directory containing the model responses. model_dir_swap: The directory containing the model responses with swapped inputs. Returns: dict[float]: The accuracy and agreement. """ acc, agr = pairwise_compare(human_dir, model_dir) swap_acc, swap_agr = pairwise_compare( human_dir, model_dir_swap, ) acc = (acc + swap_acc) / 2 agr = (agr + swap_agr) / 2 models_acc, models_agr = pairwise_compare( model_dir, model_dir_swap, ) return acc, agr, models_acc, models_agr def load_leaderboard() -> pd.DataFrame: """Loads the leaderboard from the file system""" with open("./data/models.yaml") as fp: models = yaml.safe_load(fp) predictions = {k: [] for k in ["Model", "Accuracy", "Agreement", "Self-Accuracy", "Self-Agreement"]} for model in models: fdir = model["fdir"] acc, agr, models_acc, models_agr = pairwise_meta_eval( f"./data/instrusum.json", f"./predictions/{fdir}.jsonl", f"./predictions/{fdir}_swap.jsonl" ) predictions["Model"].append(model["name"]) predictions["Accuracy"].append(acc) predictions["Agreement"].append(agr) predictions["Self-Accuracy"].append(models_acc) predictions["Self-Agreement"].append(models_agr) return pd.DataFrame(predictions) def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return raw_data, df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]