|
import os
|
|
import sys
|
|
import numpy as np
|
|
import pyworld
|
|
import torchcrepe
|
|
import torch
|
|
import parselmouth
|
|
import tqdm
|
|
from multiprocessing import Process, cpu_count
|
|
|
|
current_directory = os.getcwd()
|
|
sys.path.append(current_directory)
|
|
|
|
|
|
from rvc.lib.utils import load_audio
|
|
|
|
|
|
exp_dir = sys.argv[1]
|
|
f0_method = sys.argv[2]
|
|
num_processes = cpu_count()
|
|
|
|
try:
|
|
hop_length = int(sys.argv[3])
|
|
except ValueError:
|
|
hop_length = 128
|
|
|
|
DoFormant = False
|
|
Quefrency = 1.0
|
|
Timbre = 1.0
|
|
|
|
|
|
class FeatureInput:
|
|
def __init__(self, sample_rate=16000, hop_size=160):
|
|
self.fs = sample_rate
|
|
self.hop = hop_size
|
|
|
|
self.f0_method_dict = self.get_f0_method_dict()
|
|
|
|
self.f0_bin = 256
|
|
self.f0_max = 1100.0
|
|
self.f0_min = 50.0
|
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
|
|
|
def mncrepe(self, method, x, p_len, hop_length):
|
|
f0 = None
|
|
torch_device_index = 0
|
|
torch_device = (
|
|
torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
|
|
if torch.cuda.is_available()
|
|
else (
|
|
torch.device("mps")
|
|
if torch.backends.mps.is_available()
|
|
else torch.device("cpu")
|
|
)
|
|
)
|
|
|
|
audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True)
|
|
audio /= torch.quantile(torch.abs(audio), 0.999)
|
|
audio = torch.unsqueeze(audio, dim=0)
|
|
if audio.ndim == 2 and audio.shape[0] > 1:
|
|
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
|
audio = audio.detach()
|
|
|
|
if method == "crepe":
|
|
pitch = torchcrepe.predict(
|
|
audio,
|
|
self.fs,
|
|
hop_length,
|
|
self.f0_min,
|
|
self.f0_max,
|
|
"full",
|
|
batch_size=hop_length * 2,
|
|
device=torch_device,
|
|
pad=True,
|
|
)
|
|
p_len = p_len or x.shape[0] // hop_length
|
|
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
|
source[source < 0.001] = np.nan
|
|
target = np.interp(
|
|
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
|
np.arange(0, len(source)),
|
|
source,
|
|
)
|
|
f0 = np.nan_to_num(target)
|
|
|
|
return f0
|
|
|
|
def get_pm(self, x, p_len):
|
|
f0 = (
|
|
parselmouth.Sound(x, self.fs)
|
|
.to_pitch_ac(
|
|
time_step=160 / 16000,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=self.f0_min,
|
|
pitch_ceiling=self.f0_max,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
|
|
return np.pad(
|
|
f0,
|
|
[
|
|
[
|
|
max(0, (p_len - len(f0) + 1) // 2),
|
|
max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2),
|
|
]
|
|
],
|
|
mode="constant",
|
|
)
|
|
|
|
def get_harvest(self, x):
|
|
f0_spectral = pyworld.harvest(
|
|
x.astype(np.double),
|
|
fs=self.fs,
|
|
f0_ceil=self.f0_max,
|
|
f0_floor=self.f0_min,
|
|
frame_period=1000 * self.hop / self.fs,
|
|
)
|
|
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
|
|
|
|
def get_dio(self, x):
|
|
f0_spectral = pyworld.dio(
|
|
x.astype(np.double),
|
|
fs=self.fs,
|
|
f0_ceil=self.f0_max,
|
|
f0_floor=self.f0_min,
|
|
frame_period=1000 * self.hop / self.fs,
|
|
)
|
|
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)
|
|
|
|
def get_rmvpe(self, x):
|
|
if not hasattr(self, "model_rmvpe"):
|
|
from rvc.lib.rmvpe import RMVPE
|
|
|
|
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=False, device="cpu")
|
|
return self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
|
|
|
def get_f0_method_dict(self):
|
|
return {
|
|
"pm": self.get_pm,
|
|
"harvest": self.get_harvest,
|
|
"dio": self.get_dio,
|
|
"rmvpe": self.get_rmvpe,
|
|
}
|
|
|
|
def compute_f0(self, path, f0_method, hop_length):
|
|
x = load_audio(path, self.fs)
|
|
p_len = x.shape[0] // self.hop
|
|
|
|
if f0_method in self.f0_method_dict:
|
|
f0 = (
|
|
self.f0_method_dict[f0_method](x, p_len)
|
|
if f0_method == "pm"
|
|
else self.f0_method_dict[f0_method](x)
|
|
)
|
|
elif f0_method == "crepe":
|
|
f0 = self.mncrepe(f0_method, x, p_len, hop_length)
|
|
return f0
|
|
|
|
def coarse_f0(self, f0):
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
|
|
self.f0_bin - 2
|
|
) / (self.f0_mel_max - self.f0_mel_min) + 1
|
|
|
|
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
|
|
f0_coarse = np.rint(f0_mel).astype(int)
|
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
|
|
f0_coarse.max(),
|
|
f0_coarse.min(),
|
|
)
|
|
return f0_coarse
|
|
|
|
def process_paths(self, paths, f0_method, hop_length, thread_n):
|
|
if len(paths) == 0:
|
|
print("There are no paths to process.")
|
|
return
|
|
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
|
|
description = f"Thread {thread_n} | Hop-Length {hop_length}"
|
|
pbar.set_description(description)
|
|
|
|
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
|
try:
|
|
if os.path.exists(opt_path1 + ".npy") and os.path.exists(
|
|
opt_path2 + ".npy"
|
|
):
|
|
pbar.update(1)
|
|
continue
|
|
|
|
feature_pit = self.compute_f0(inp_path, f0_method, hop_length)
|
|
np.save(
|
|
opt_path2,
|
|
feature_pit,
|
|
allow_pickle=False,
|
|
)
|
|
coarse_pit = self.coarse_f0(feature_pit)
|
|
np.save(
|
|
opt_path1,
|
|
coarse_pit,
|
|
allow_pickle=False,
|
|
)
|
|
pbar.update(1)
|
|
except Exception as error:
|
|
print(f"f0fail-{idx}-{inp_path}-{error}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
feature_input = FeatureInput()
|
|
paths = []
|
|
input_root = f"{exp_dir}/1_16k_wavs"
|
|
output_root1 = f"{exp_dir}/2a_f0"
|
|
output_root2 = f"{exp_dir}/2b-f0nsf"
|
|
|
|
os.makedirs(output_root1, exist_ok=True)
|
|
os.makedirs(output_root2, exist_ok=True)
|
|
for name in sorted(list(os.listdir(input_root))):
|
|
input_path = f"{input_root}/{name}"
|
|
if "spec" in input_path:
|
|
continue
|
|
output_path1 = f"{output_root1}/{name}"
|
|
output_path2 = f"{output_root2}/{name}"
|
|
paths.append([input_path, output_path1, output_path2])
|
|
|
|
processes = []
|
|
print("Using f0 method: " + f0_method)
|
|
for i in range(num_processes):
|
|
p = Process(
|
|
target=feature_input.process_paths,
|
|
args=(paths[i::num_processes], f0_method, hop_length, i),
|
|
)
|
|
processes.append(p)
|
|
p.start()
|
|
for i in range(num_processes):
|
|
processes[i].join()
|
|
|