File size: 2,345 Bytes
271d7b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
# file: deploy_demo.py
# time: 2021/10/10
# author: yangheng <yangheng@m.scnu.edu.cn>
# github: https://github.com/yangheng95
# Copyright (C) 2021. All Rights Reserved.

import gradio as gr
import pandas as pd

from pyabsa import APCCheckpointManager

sentiment_classifier = APCCheckpointManager.get_sentiment_classifier(checkpoint='multilingual',
                                                                     auto_device=True  # False means load model on CPU
                                                                     )


def inference(text):
    result = sentiment_classifier.infer(text=text,
                                        print_result=True,
                                        clear_input_samples=True)

    result = pd.DataFrame({
        'aspect': result[0]['aspect'],
        'sentiment': result[0]['sentiment'],
        'confidence': round(result[0]['confidence'], 3),
        'ref_sentiment': result[0]['ref_sentiment'],
        'is_correct': result[0]['ref_check'],
    })

    return result


if __name__ == '__main__':
    iface = gr.Interface(
        fn=inference,
        inputs=["text"],
        examples=[
            ['The [ASP]battery-life[ASP], and this [ASP]screen[ASP] is ok'],
            ['The [ASP] battery-life [ASP] is bad'],
            ['The [ASP] battery-life [ASP] is good'],
            ['Strong build though which really adds to its [ASP]durability[ASP] .'],  # !sent! Positive
            ['Strong [ASP]build[ASP] though which really adds to its durability . !sent! Positive'],
            ['The [ASP]battery life[ASP] is excellent - 6-7 hours without charging . !sent! Positive'],
            ['I have had my computer for 2 weeks already and it [ASP]works[ASP] perfectly . !sent! Positive'],
            ['And I may be the only one but I am really liking [ASP]Windows 8[ASP] . !sent! Positive'],
            ['This demo is trained on the laptop and restaurant and other review datasets from [ASP]ABSADatasets[ASP] (https://github.com/yangheng95/ABSADatasets)'],
            ['To fit on your data, please train the model on your own data, see the [ASP]PyABSA[ASP] (https://github.com/yangheng95/PyABSA)'],
        ],
        outputs="dataframe",
        title='Aspect Term Extraction for Short Texts (powered by PyABSA)'
    )

    iface.launch(share=True)