Super-Resolution-Anime-Diffusion / RealESRGANv030 /inference_realesrgan_video.py
yangheng's picture
init
9842c28
import argparse
import cv2
import glob
import mimetypes
import numpy as np
import os
import shutil
import subprocess
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from os import path as osp
from tqdm import tqdm
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
try:
import ffmpeg
except ImportError:
import pip
pip.main(["install", "--user", "ffmpeg-python"])
import ffmpeg
def get_video_meta_info(video_path):
ret = {}
probe = ffmpeg.probe(video_path)
video_streams = [
stream for stream in probe["streams"] if stream["codec_type"] == "video"
]
has_audio = any(stream["codec_type"] == "audio" for stream in probe["streams"])
ret["width"] = video_streams[0]["width"]
ret["height"] = video_streams[0]["height"]
ret["fps"] = eval(video_streams[0]["avg_frame_rate"])
ret["audio"] = ffmpeg.input(video_path).audio if has_audio else None
ret["nb_frames"] = int(video_streams[0]["nb_frames"])
return ret
def get_sub_video(args, num_process, process_idx):
if num_process == 1:
return args.input
meta = get_video_meta_info(args.input)
duration = int(meta["nb_frames"] / meta["fps"])
part_time = duration // num_process
print(f"duration: {duration}, part_time: {part_time}")
os.makedirs(
osp.join(args.output, f"{args.video_name}_inp_tmp_videos"), exist_ok=True
)
out_path = osp.join(
args.output, f"{args.video_name}_inp_tmp_videos", f"{process_idx:03d}.mp4"
)
cmd = [
args.ffmpeg_bin,
f"-i {args.input}",
"-ss",
f"{part_time * process_idx}",
f"-to {part_time * (process_idx + 1)}"
if process_idx != num_process - 1
else "",
"-async 1",
out_path,
"-y",
]
print(" ".join(cmd))
subprocess.call(" ".join(cmd), shell=True)
return out_path
class Reader:
def __init__(self, args, total_workers=1, worker_idx=0):
self.args = args
input_type = mimetypes.guess_type(args.input)[0]
self.input_type = "folder" if input_type is None else input_type
self.paths = [] # for image&folder type
self.audio = None
self.input_fps = None
if self.input_type.startswith("video"):
video_path = get_sub_video(args, total_workers, worker_idx)
self.stream_reader = (
ffmpeg.input(video_path)
.output("pipe:", format="rawvideo", pix_fmt="bgr24", loglevel="error")
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
meta = get_video_meta_info(video_path)
self.width = meta["width"]
self.height = meta["height"]
self.input_fps = meta["fps"]
self.audio = meta["audio"]
self.nb_frames = meta["nb_frames"]
else:
if self.input_type.startswith("image"):
self.paths = [args.input]
else:
paths = sorted(glob.glob(os.path.join(args.input, "*")))
tot_frames = len(paths)
num_frame_per_worker = tot_frames // total_workers + (
1 if tot_frames % total_workers else 0
)
self.paths = paths[
num_frame_per_worker
* worker_idx : num_frame_per_worker
* (worker_idx + 1)
]
self.nb_frames = len(self.paths)
assert self.nb_frames > 0, "empty folder"
from PIL import Image
tmp_img = Image.open(self.paths[0])
self.width, self.height = tmp_img.size
self.idx = 0
def get_resolution(self):
return self.height, self.width
def get_fps(self):
if self.args.fps is not None:
return self.args.fps
elif self.input_fps is not None:
return self.input_fps
return 24
def get_audio(self):
return self.audio
def __len__(self):
return self.nb_frames
def get_frame_from_stream(self):
img_bytes = self.stream_reader.stdout.read(
self.width * self.height * 3
) # 3 bytes for one pixel
if not img_bytes:
return None
img = np.frombuffer(img_bytes, np.uint8).reshape([self.height, self.width, 3])
return img
def get_frame_from_list(self):
if self.idx >= self.nb_frames:
return None
img = cv2.imread(self.paths[self.idx])
self.idx += 1
return img
def get_frame(self):
if self.input_type.startswith("video"):
return self.get_frame_from_stream()
else:
return self.get_frame_from_list()
def close(self):
if self.input_type.startswith("video"):
self.stream_reader.stdin.close()
self.stream_reader.wait()
class Writer:
def __init__(self, args, audio, height, width, video_save_path, fps):
out_width, out_height = int(width * args.outscale), int(height * args.outscale)
if out_height > 2160:
print(
"You are generating video that is larger than 4K, which will be very slow due to IO speed.",
"We highly recommend to decrease the outscale(aka, -s).",
)
if audio is not None:
self.stream_writer = (
ffmpeg.input(
"pipe:",
format="rawvideo",
pix_fmt="bgr24",
s=f"{out_width}x{out_height}",
framerate=fps,
)
.output(
audio,
video_save_path,
pix_fmt="yuv420p",
vcodec="libx264",
loglevel="error",
acodec="copy",
)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
else:
self.stream_writer = (
ffmpeg.input(
"pipe:",
format="rawvideo",
pix_fmt="bgr24",
s=f"{out_width}x{out_height}",
framerate=fps,
)
.output(
video_save_path,
pix_fmt="yuv420p",
vcodec="libx264",
loglevel="error",
)
.overwrite_output()
.run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)
)
def write_frame(self, frame):
frame = frame.astype(np.uint8).tobytes()
self.stream_writer.stdin.write(frame)
def close(self):
self.stream_writer.stdin.close()
self.stream_writer.wait()
def inference_video(args, video_save_path, device=None, total_workers=1, worker_idx=0):
# ---------------------- determine models according to model names ---------------------- #
args.model_name = args.model_name.split(".pth")[0]
if args.model_name == "RealESRGAN_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
]
elif args.model_name == "RealESRNet_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
]
elif (
args.model_name == "RealESRGAN_x4plus_anime_6B"
): # x4 RRDBNet model with 6 blocks
model = RRDBNet(
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
]
elif args.model_name == "RealESRGAN_x2plus": # x2 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
netscale = 2
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
]
elif args.model_name == "realesr-animevideov3": # x4 VGG-style model (XS size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
]
elif args.model_name == "realesr-general-x4v3": # x4 VGG-style model (S size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
]
# ---------------------- determine model paths ---------------------- #
model_path = os.path.join("weights", args.model_name + ".pth")
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url,
model_dir=os.path.join(ROOT_DIR, "weights"),
progress=True,
file_name=None,
)
# use dni to control the denoise strength
dni_weight = None
if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1:
wdn_model_path = model_path.replace(
"realesr-general-x4v3", "realesr-general-wdn-x4v3"
)
model_path = [model_path, wdn_model_path]
dni_weight = [args.denoise_strength, 1 - args.denoise_strength]
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=not args.fp32,
device=device,
)
if "anime" in args.model_name and args.face_enhance:
print(
"face_enhance is not supported in anime models, we turned this option off for you. "
"if you insist on turning it on, please manually comment the relevant lines of code."
)
args.face_enhance = False
if args.face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
upscale=args.outscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
) # TODO support custom device
else:
face_enhancer = None
reader = Reader(args, total_workers, worker_idx)
audio = reader.get_audio()
height, width = reader.get_resolution()
fps = reader.get_fps()
writer = Writer(args, audio, height, width, video_save_path, fps)
pbar = tqdm(total=len(reader), unit="frame", desc="inference")
while True:
img = reader.get_frame()
if img is None:
break
try:
if args.face_enhance:
_, _, output = face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = upsampler.enhance(img, outscale=args.outscale)
except RuntimeError as error:
print("Error", error)
print(
"If you encounter CUDA out of memory, try to set --tile with a smaller number."
)
else:
writer.write_frame(output)
torch.cuda.synchronize(device)
pbar.update(1)
reader.close()
writer.close()
def run(args):
args.video_name = osp.splitext(os.path.basename(args.input))[0]
video_save_path = osp.join(args.output, f"{args.video_name}_{args.suffix}.mp4")
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames")
os.makedirs(tmp_frames_folder, exist_ok=True)
os.system(
f"ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {tmp_frames_folder}/frame%08d.png"
)
args.input = tmp_frames_folder
num_gpus = torch.cuda.device_count()
num_process = num_gpus * args.num_process_per_gpu
if num_process == 1:
inference_video(args, video_save_path)
return
ctx = torch.multiprocessing.get_context("spawn")
pool = ctx.Pool(num_process)
os.makedirs(
osp.join(args.output, f"{args.video_name}_out_tmp_videos"), exist_ok=True
)
pbar = tqdm(total=num_process, unit="sub_video", desc="inference")
for i in range(num_process):
sub_video_save_path = osp.join(
args.output, f"{args.video_name}_out_tmp_videos", f"{i:03d}.mp4"
)
pool.apply_async(
inference_video,
args=(
args,
sub_video_save_path,
torch.device(i % num_gpus),
num_process,
i,
),
callback=lambda arg: pbar.update(1),
)
pool.close()
pool.join()
# combine sub videos
# prepare vidlist.txt
with open(f"{args.output}/{args.video_name}_vidlist.txt", "w") as f:
for i in range(num_process):
f.write(f"file '{args.video_name}_out_tmp_videos/{i:03d}.mp4'\n")
cmd = [
args.ffmpeg_bin,
"-f",
"concat",
"-safe",
"0",
"-i",
f"{args.output}/{args.video_name}_vidlist.txt",
"-c",
"copy",
f"{video_save_path}",
]
print(" ".join(cmd))
subprocess.call(cmd)
shutil.rmtree(osp.join(args.output, f"{args.video_name}_out_tmp_videos"))
if osp.exists(osp.join(args.output, f"{args.video_name}_inp_tmp_videos")):
shutil.rmtree(osp.join(args.output, f"{args.video_name}_inp_tmp_videos"))
os.remove(f"{args.output}/{args.video_name}_vidlist.txt")
def main():
"""Inference demo for Real-ESRGAN.
It mainly for restoring anime videos.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input", type=str, default="inputs", help="Input video, image or folder"
)
parser.add_argument(
"-n",
"--model_name",
type=str,
default="realesr-animevideov3",
help=(
"Model names: realesr-animevideov3 | RealESRGAN_x4plus_anime_6B | RealESRGAN_x4plus | RealESRNet_x4plus |"
" RealESRGAN_x2plus | realesr-general-x4v3"
"Default:realesr-animevideov3"
),
)
parser.add_argument(
"-o", "--output", type=str, default="results", help="Output folder"
)
parser.add_argument(
"-dn",
"--denoise_strength",
type=float,
default=0.5,
help=(
"Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. "
"Only used for the realesr-general-x4v3 model"
),
)
parser.add_argument(
"-s",
"--outscale",
type=float,
default=4,
help="The final upsampling scale of the image",
)
parser.add_argument(
"--suffix", type=str, default="out", help="Suffix of the restored video"
)
parser.add_argument(
"-t",
"--tile",
type=int,
default=0,
help="Tile size, 0 for no tile during testing",
)
parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding")
parser.add_argument(
"--pre_pad", type=int, default=0, help="Pre padding size at each border"
)
parser.add_argument(
"--face_enhance", action="store_true", help="Use GFPGAN to enhance face"
)
parser.add_argument(
"--fp32",
action="store_true",
help="Use fp32 precision during inference. Default: fp16 (half precision).",
)
parser.add_argument(
"--fps", type=float, default=None, help="FPS of the output video"
)
parser.add_argument(
"--ffmpeg_bin", type=str, default="ffmpeg", help="The path to ffmpeg"
)
parser.add_argument("--extract_frame_first", action="store_true")
parser.add_argument("--num_process_per_gpu", type=int, default=1)
parser.add_argument(
"--alpha_upsampler",
type=str,
default="realesrgan",
help="The upsampler for the alpha channels. Options: realesrgan | bicubic",
)
parser.add_argument(
"--ext",
type=str,
default="auto",
help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs",
)
args = parser.parse_args()
args.input = args.input.rstrip("/").rstrip("\\")
os.makedirs(args.output, exist_ok=True)
if mimetypes.guess_type(args.input)[0] is not None and mimetypes.guess_type(
args.input
)[0].startswith("video"):
is_video = True
else:
is_video = False
if is_video and args.input.endswith(".flv"):
mp4_path = args.input.replace(".flv", ".mp4")
os.system(f"ffmpeg -i {args.input} -codec copy {mp4_path}")
args.input = mp4_path
if args.extract_frame_first and not is_video:
args.extract_frame_first = False
run(args)
if args.extract_frame_first:
tmp_frames_folder = osp.join(args.output, f"{args.video_name}_inp_tmp_frames")
shutil.rmtree(tmp_frames_folder)
if __name__ == "__main__":
main()