Spaces:
Sleeping
Sleeping
feat: Add DeepChopper Gradio app for DNA sequence analysis
Browse files- app.py +187 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
from functools import partial
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import lightning
|
7 |
+
import torch
|
8 |
+
from datasets import Dataset
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
|
11 |
+
import deepchopper
|
12 |
+
from deepchopper.deepchopper import default, encode_qual, remove_intervals_and_keep_left, smooth_label_region
|
13 |
+
from deepchopper.models.llm import (
|
14 |
+
tokenize_and_align_labels_and_quals,
|
15 |
+
)
|
16 |
+
from deepchopper.utils import (
|
17 |
+
summary_predict,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def parse_fq_record(text: str):
|
22 |
+
"""Parse a single FASTQ record into a dictionary."""
|
23 |
+
lines = text.strip().split("\n")
|
24 |
+
for i in range(0, len(lines), 4):
|
25 |
+
content = lines[i : i + 4]
|
26 |
+
record_id, seq, _, qual = content
|
27 |
+
assert len(seq) == len(qual) # noqa: S101
|
28 |
+
|
29 |
+
yield {
|
30 |
+
"id": record_id,
|
31 |
+
"seq": seq,
|
32 |
+
"qual": encode_qual(qual, default.KMER_SIZE),
|
33 |
+
"target": [0, 0],
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
def load_dataset(text: str, tokenizer):
|
38 |
+
"""Load dataset from text."""
|
39 |
+
dataset = Dataset.from_generator(parse_fq_record, gen_kwargs={"text": text}).with_format("torch")
|
40 |
+
tokenized_dataset = dataset.map(
|
41 |
+
partial(
|
42 |
+
tokenize_and_align_labels_and_quals,
|
43 |
+
tokenizer=tokenizer,
|
44 |
+
max_length=tokenizer.max_len_single_sentence,
|
45 |
+
),
|
46 |
+
num_proc=multiprocessing.cpu_count(), # type: ignore
|
47 |
+
).remove_columns(["id", "seq", "qual", "target"])
|
48 |
+
return dataset, tokenized_dataset
|
49 |
+
|
50 |
+
|
51 |
+
def predict(
|
52 |
+
text: str,
|
53 |
+
smooth_window_size: int = 21,
|
54 |
+
min_interval_size: int = 13,
|
55 |
+
approved_interval_number: int = 20,
|
56 |
+
max_process_intervals: int = 8, # default is 4
|
57 |
+
batch_size: int = 1,
|
58 |
+
num_workers: int = 1,
|
59 |
+
):
|
60 |
+
tokenizer = deepchopper.models.llm.load_tokenizer_from_hyena_model(model_name="hyenadna-small-32k-seqlen")
|
61 |
+
dataset, tokenized_dataset = load_dataset(text, tokenizer)
|
62 |
+
|
63 |
+
dataloader = DataLoader(tokenized_dataset, batch_size=batch_size, num_workers=num_workers, persistent_workers=True)
|
64 |
+
model = deepchopper.DeepChopper.from_pretrained("yangliz5/deepchopper")
|
65 |
+
|
66 |
+
accelerator = "cpu" if torch.cuda.is_available() else "gpu"
|
67 |
+
trainer = lightning.pytorch.trainer.Trainer(
|
68 |
+
accelerator=accelerator,
|
69 |
+
devices=-1,
|
70 |
+
deterministic=False,
|
71 |
+
logger=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
predicts = trainer.predict(model=model, dataloaders=dataloader, return_predictions=True)
|
75 |
+
|
76 |
+
assert len(predicts) == 1 # noqa: S101
|
77 |
+
|
78 |
+
smooth_interval_json: list[dict[str, int]] = []
|
79 |
+
highlighted_text: list[tuple[str, str | None]] = []
|
80 |
+
|
81 |
+
for idx, preds in enumerate(predicts):
|
82 |
+
true_prediction, _true_label = summary_predict(predictions=preds[0], labels=preds[1])
|
83 |
+
|
84 |
+
_id = dataset[idx]["id"]
|
85 |
+
seq = dataset[idx]["seq"]
|
86 |
+
|
87 |
+
smooth_predict_targets = smooth_label_region(
|
88 |
+
true_prediction[0], smooth_window_size, min_interval_size, approved_interval_number
|
89 |
+
)
|
90 |
+
|
91 |
+
if not smooth_predict_targets or len(smooth_predict_targets) > max_process_intervals:
|
92 |
+
continue
|
93 |
+
|
94 |
+
# zip two consecutive elements
|
95 |
+
_selected_seqs, selected_intervals = remove_intervals_and_keep_left(seq, smooth_predict_targets)
|
96 |
+
total_intervals = sorted(selected_intervals + smooth_predict_targets)
|
97 |
+
|
98 |
+
smooth_interval_json.extend({"start": i[0], "end": i[1]} for i in smooth_predict_targets)
|
99 |
+
|
100 |
+
highlighted_text.extend(
|
101 |
+
(seq[interval[0] : interval[1]], "ada" if interval in smooth_predict_targets else None)
|
102 |
+
for interval in total_intervals
|
103 |
+
)
|
104 |
+
return smooth_interval_json, highlighted_text
|
105 |
+
|
106 |
+
|
107 |
+
def process_input(text: str | None, file: str | None):
|
108 |
+
"""Process the input and return the prediction."""
|
109 |
+
if not text and not file:
|
110 |
+
gr.Warning("Both text and file are empty")
|
111 |
+
|
112 |
+
if file:
|
113 |
+
MAX_LINES = 4
|
114 |
+
file_content = []
|
115 |
+
with Path(file).open() as f:
|
116 |
+
for idx, line in enumerate(f):
|
117 |
+
if idx >= MAX_LINES:
|
118 |
+
break
|
119 |
+
file_content.append(line)
|
120 |
+
text = "".join(file_content)
|
121 |
+
return predict(text=text)
|
122 |
+
|
123 |
+
return predict(text=text)
|
124 |
+
|
125 |
+
|
126 |
+
def create_gradio_app():
|
127 |
+
"""Create a Gradio app for DeepChopper."""
|
128 |
+
example = (
|
129 |
+
"@1065:1135|393d635c-64f0-41ed-8531-12174d8efb28+f6a60069-1fcf-4049-8e7c-37523b4e273f\n"
|
130 |
+
"GCAGCTATGAATGCAAGGCCACAAGGTGGATGGAAGAGTTGTGGAACCAAAGAGCTGTCTTCCAGAGAAGATTTCGAGATAAGTCGCCCATCAGTGAACAAGATATTGTTGGTGGCATTTGATGAGAACGTTCCAAGATTATTGACAGATTAGTGAAAAGTAAGATTGAAATCATGACTGACCGTAAGTGGCAAGAAAGGGCTTTTGCCTTTGTAACCTTTGACGACCATGACTCCGTGGATAAGATTGTCATTCAGAATACCATACTGTGAATGGCCACATCTTTATTGTGAAGTTAGAAAAGCCCTGTCAAAGCAAGAGATGAATCAGTGCTTCTCCAGCCAAAGAGGTCGAAGTGGTTCTGGAAACTTTGGTGGTGGTCGTGGAGGTGGTTTCGGTGGGAATGACAACTCGGTCGTGGAGGAAACTTCAGTGGTCGTGGTGGCTTTGGTGGCAGCCGTGGTGGTGGTGGATATGGTGGCAGTGGGGATGGCTATAATGGATTTGGTAATGATGGAAGCAATTTGGAGGTGGTGGAAGCTACAATGATTTTGGGAATTACAACAATCAGTCTTCAAATTTTGGACCCCTAGGAGGAAATTTTGGTAGAAGCTCTGGCCCCATGGCGGTGGAGGCCAAATACTTTTGCAAACCACGAAACCAAGGTGGCTATGGCGGTCCAGCAGCAGCAGTAGCTATGGCAGTGGCAGAAGATTTTAATTAGGAAACAAAGCTTAGCAGGAGAGGAGAGCCAGAGAAGTGACAGGGAAGTACAGGTTACAACAGATTTGTGAACTCAGCCCAAGCACAGTGGTGGCAGGGCCTAGCTGCTACAAAGAAGACATGTTTTAGACAAATACTCATGTGTATGGGCAAAACTTGAGGACTGTATTTGTGACTAACTGTATAACAGGTTATTTTAGTTTCTGTTTGTGGAAAGTGTAAAGCATTCCAACAAAGGTTTTTAATGTAGATTTTTTTTTTTGCACCCCATGCTGTTGATTTGCTAAATGTAACAGTCTGATCGTGACGCTGAATAAATGTCTTTTTTAAAAAAAAAAAAAAGCTCCCTCCCATCCCCTGCTGCTAACTGATCCCATTATATCTAACCTGCCCCCCCATATCACCTGCTCCCGAGCTACCTAAGAACAGCTAAAAGAGCACACCCGCATGTAGCAAAATAGTGGGAAGATTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCTAGATAGAATCTTAGTTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTCCAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGTAAAAAATCAACACCCA\n"
|
131 |
+
"+\n"
|
132 |
+
".0==?SSSSSSSSSSSH2216<868;SSSSSSSSSQQSRSIIHEDDESSSSSSJIKMGEKISSJJICCBDQ?;;8:;,**(&$'+501)\"#$()+%&&0<5+*/('%'))))'''$##\"\"\"\"%&--$\"\"\"('%)1L3*'')'#\"#&+*$&\"\"#*(&'''+,,<;9<BHGF//.LKORQSK<###%*-89<FSSSSE=BAFHFDB???3313NN?>=ANOSJDCADHGMOQSSD=7>BRRSPIEEEOQSSQ4->LIC7EE045///03IIJQSSSNGE6('.5??@A@=,,EGRSPKJ<==<556GFLLQRANSSSSSSSSG...*%%%(***(%'3@LOOSSSSM...7BCMMSSSSSSSSSSSSSSSDFIPSSSGGGGPOQLIHIL4103HMSILLNOSSSSSSSSSS22CBCGSHHHHSSSSSSSSD??@<<<:DDDSSSSSSSSSSA@6688OSSSSSROJJKLSNNNMSSSSQPOOSOOQSSSSSRRHIHISSRSSSSSSSSSSSJFF=??@SSQRK:424<444FFG///1S@@@ASNNNNPN:4JMDDLPSSSSSSBA?B?@@+'&'BD**8EDEFQPIMLE$$&',79CSJJPSGA+***DN;3-('&(;>6(()/-,,)%')1FRNNJ-:=>GC;&;CHNFFDCEEKJLFA22/27A.....HSQLHL))8<=?JSSSFGSKIHDDCCEFDAA@CFJKLNL>:9/1>>?OSLK@+HPSA;>>>K;;;;SSSSOQLPPMORSSSSSQSSSSSSS=:9**?D889SSRFFEDKJJJEEDKSSSNNOSSS.---,&*++SSSSQRSSSSQPGED<<89<@GJ999:SSKBBBAJHK=SSSJJKNMGHKKHQA<<>OPKFEAACDHJKMORB/)'((6**)15DA99;JSQSSS2())+J))EGMQOMMKJF>?<<AA620..D..,/112SOIIJSQFNEEEOMF?066=>@4,3;B>87FSSSSSSSSSSSSSSS<<::5658@AHMMSSRECC448/=<<>SSCB:5546;<??KF==;;FFEDFHKKJG):C>=>BJHINJFDPPPPPPPPPPPPPP%'*%$%+-%'(-22&&%('''&&&#\"\"%&'+0,,0;:1&\"\"%'(+++8'**(\"$$#&$'**//.3497$\"3CFHLOSSSSR:887:;;FSSRPRSSS4433$#$%&$$-056>@:;>=@?AHEFEC;*EKMSSRSRRDB>=AFRSSSSBSOOPSMDAABHH976951-9DHPQO/---?@ELSSQSRJHKKBKKLSSLINSOSSQSRIMSSSSSS>?MKIINSSGSSSSSSSQQMK544MJKKNKHGGLFFGBDB?EHIKGD?@DHPPIIF555)&(+,ADSSSSRQSSSQSS=9/0JJMSQSOSSO/97=B@=:>"
|
133 |
+
)
|
134 |
+
|
135 |
+
custom_css = """
|
136 |
+
.header { text-align: center; margin-bottom: 30px; }
|
137 |
+
.footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; }
|
138 |
+
"""
|
139 |
+
|
140 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
141 |
+
gr.HTML(
|
142 |
+
"""
|
143 |
+
<div class="header">
|
144 |
+
<h1>🧬 DeepChopper: DNA Sequence Analysis</h1>
|
145 |
+
<p>Analyze DNA sequences and detect artificial sequences</p>
|
146 |
+
</div>
|
147 |
+
"""
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column(scale=1):
|
152 |
+
text_input = gr.Textbox(
|
153 |
+
label="Input DNA Sequence", placeholder="Paste your DNA sequence here...", lines=10
|
154 |
+
)
|
155 |
+
file_input = gr.File(label="Or upload a FASTQ file")
|
156 |
+
submit_btn = gr.Button("Analyze", variant="primary")
|
157 |
+
|
158 |
+
with gr.Column(scale=1):
|
159 |
+
json_output = gr.JSON(label="Detected Artificial Regions")
|
160 |
+
highlighted_text = gr.HighlightedText(label="Highlighted Sequence")
|
161 |
+
|
162 |
+
submit_btn.click(fn=process_input, inputs=[text_input, file_input], outputs=[json_output, highlighted_text])
|
163 |
+
|
164 |
+
gr.Examples(
|
165 |
+
examples=[[example]],
|
166 |
+
inputs=[text_input],
|
167 |
+
)
|
168 |
+
|
169 |
+
gr.HTML(
|
170 |
+
"""
|
171 |
+
<div class="footer">
|
172 |
+
<p>DeepChopper - Powered by AI for DNA sequence analysis</p>
|
173 |
+
</div>
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
return demo
|
178 |
+
|
179 |
+
|
180 |
+
def main():
|
181 |
+
"""Launch the Gradio app."""
|
182 |
+
app = create_gradio_app()
|
183 |
+
app.launch()
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.1.0
|
2 |
+
lightning>=2.1.2
|
3 |
+
datasets>=2.17.1
|
4 |
+
deepchopper>=1.0.1
|