|
import os |
|
import time |
|
import logging |
|
import requests |
|
import json |
|
import random |
|
import uuid |
|
import concurrent.futures |
|
import threading |
|
import base64 |
|
import io |
|
from PIL import Image |
|
from datetime import datetime, timedelta |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from flask import Flask, request, jsonify, Response, stream_with_context |
|
|
|
os.environ['TZ'] = 'Asia/Shanghai' |
|
time.tzset() |
|
|
|
logging.basicConfig(level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
API_ENDPOINT = "https://api.siliconflow.cn/v1/user/info" |
|
TEST_MODEL_ENDPOINT = "https://api.siliconflow.cn/v1/chat/completions" |
|
MODELS_ENDPOINT = "https://api.siliconflow.cn/v1/models" |
|
EMBEDDINGS_ENDPOINT = "https://api.siliconflow.cn/v1/embeddings" |
|
|
|
app = Flask(__name__) |
|
|
|
text_models = [] |
|
free_text_models = [] |
|
embedding_models = [] |
|
free_embedding_models = [] |
|
image_models = [] |
|
free_image_models = [] |
|
|
|
invalid_keys_global = [] |
|
free_keys_global = [] |
|
unverified_keys_global = [] |
|
valid_keys_global = [] |
|
|
|
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1000) |
|
model_key_indices = {} |
|
|
|
request_timestamps = [] |
|
token_counts = [] |
|
data_lock = threading.Lock() |
|
|
|
def get_credit_summary(api_key): |
|
""" |
|
使用 API 密钥获取额度信息。 |
|
""" |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
try: |
|
response = requests.get(API_ENDPOINT, headers=headers) |
|
response.raise_for_status() |
|
data = response.json().get("data", {}) |
|
total_balance = data.get("totalBalance", 0) |
|
return {"total_balance": float(total_balance)} |
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}") |
|
return None |
|
|
|
FREE_MODEL_TEST_KEY = ( |
|
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw" |
|
) |
|
|
|
FREE_IMAGE_LIST = [ |
|
"stabilityai/stable-diffusion-3-5-large", |
|
"black-forest-labs/FLUX.1-schnell", |
|
"stabilityai/stable-diffusion-3-medium", |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
"stabilityai/stable-diffusion-2-1" |
|
] |
|
|
|
def test_model_availability(api_key, model_name): |
|
""" |
|
测试指定的模型是否可用。 |
|
""" |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
try: |
|
response = requests.post( |
|
TEST_MODEL_ENDPOINT, |
|
headers=headers, |
|
json={ |
|
"model": model_name, |
|
"messages": [{"role": "user", "content": "hi"}], |
|
"max_tokens": 5, |
|
"stream": False |
|
}, |
|
timeout=5 |
|
) |
|
if response.status_code == 429 or response.status_code == 200: |
|
return True |
|
else: |
|
return False |
|
except requests.exceptions.RequestException as e: |
|
logging.error( |
|
f"测试模型 {model_name} 可用性失败," |
|
f"API Key:{api_key},错误信息:{e}" |
|
) |
|
return False |
|
|
|
def refresh_models(): |
|
""" |
|
刷新模型列表和免费模型列表。 |
|
""" |
|
global text_models, free_text_models |
|
global embedding_models, free_embedding_models |
|
global image_models, free_image_models |
|
|
|
text_models = get_all_models(FREE_MODEL_TEST_KEY, "chat") |
|
embedding_models = get_all_models(FREE_MODEL_TEST_KEY, "embedding") |
|
image_models = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image") |
|
free_text_models = [] |
|
free_embedding_models = [] |
|
free_image_models = [] |
|
|
|
ban_models_str = os.environ.get("BAN_MODELS") |
|
ban_models = [] |
|
if ban_models_str: |
|
try: |
|
ban_models = json.loads(ban_models_str) |
|
if not isinstance(ban_models, list): |
|
logging.warning( |
|
"环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。" |
|
) |
|
ban_models = [] |
|
except json.JSONDecodeError: |
|
logging.warning( |
|
"环境变量 BAN_MODELS JSON 解析失败,请检查格式。" |
|
) |
|
ban_models = [] |
|
|
|
text_models = [model for model in text_models if model not in ban_models] |
|
embedding_models = [model for model in embedding_models if model not in ban_models] |
|
image_models = [model for model in image_models if model not in ban_models] |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
future_to_model = { |
|
executor.submit( |
|
test_model_availability, |
|
FREE_MODEL_TEST_KEY, |
|
model |
|
): model for model in text_models |
|
} |
|
for future in concurrent.futures.as_completed(future_to_model): |
|
model = future_to_model[future] |
|
try: |
|
is_free = future.result() |
|
if is_free: |
|
free_text_models.append(model) |
|
except Exception as exc: |
|
logging.error(f"模型 {model} 测试生成异常: {exc}") |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
future_to_model = { |
|
executor.submit( |
|
test_embedding_model_availability, |
|
FREE_MODEL_TEST_KEY, model |
|
): model for model in embedding_models |
|
} |
|
for future in concurrent.futures.as_completed(future_to_model): |
|
model = future_to_model[future] |
|
try: |
|
is_free = future.result() |
|
if is_free: |
|
free_embedding_models.append(model) |
|
except Exception as exc: |
|
logging.error(f"模型 {model} 测试生成异常: {exc}") |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
future_to_model = { |
|
executor.submit( |
|
test_image_model_availability, |
|
FREE_MODEL_TEST_KEY, model |
|
): model for model in image_models |
|
} |
|
for future in concurrent.futures.as_completed(future_to_model): |
|
model = future_to_model[future] |
|
try: |
|
is_free = future.result() |
|
if is_free: |
|
free_image_models.append(model) |
|
except Exception as exc: |
|
logging.error(f"模型 {model} 测试生成异常: {exc}") |
|
|
|
logging.info(f"所有文本模型列表:{text_models}") |
|
logging.info(f"免费文本模型列表:{free_text_models}") |
|
logging.info(f"所有向量模型列表:{embedding_models}") |
|
logging.info(f"免费向量模型列表:{free_embedding_models}") |
|
logging.info(f"所有生图模型列表:{image_models}") |
|
logging.info(f"免费生图模型列表:{free_image_models}") |
|
|
|
def test_embedding_model_availability(api_key, model_name): |
|
""" |
|
测试指定的向量模型是否可用。 |
|
""" |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
try: |
|
response = requests.post( |
|
EMBEDDINGS_ENDPOINT, |
|
headers=headers, |
|
json={ |
|
"model": model_name, |
|
"input": ["hi"], |
|
}, |
|
timeout=10 |
|
) |
|
if response.status_code == 429 or response.status_code == 200: |
|
return True |
|
else: |
|
return False |
|
except requests.exceptions.RequestException as e: |
|
logging.error( |
|
f"测试向量模型 {model_name} 可用性失败," |
|
f"API Key:{api_key},错误信息:{e}" |
|
) |
|
return False |
|
|
|
def test_image_model_availability(api_key, model_name): |
|
""" |
|
测试指定的图像模型是否在 FREE_IMAGE_LIST 中。 |
|
如果在列表中,返回 True,否则返回 False。 |
|
""" |
|
return model_name in FREE_IMAGE_LIST |
|
|
|
def load_keys(): |
|
""" |
|
从环境变量中加载 keys,进行去重, |
|
并根据额度和模型可用性进行分类, |
|
然后记录到日志中。 |
|
使用线程池并发处理每个 key。 |
|
""" |
|
keys_str = os.environ.get("KEYS") |
|
test_model = os.environ.get( |
|
"TEST_MODEL", |
|
"Pro/google/gemma-2-9b-it" |
|
) |
|
|
|
if keys_str: |
|
keys = [key.strip() for key in keys_str.split(',')] |
|
unique_keys = list(set(keys)) |
|
keys_str = ','.join(unique_keys) |
|
os.environ["KEYS"] = keys_str |
|
|
|
logging.info(f"加载的 keys:{unique_keys}") |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
future_to_key = { |
|
executor.submit( |
|
process_key, key, test_model |
|
): key for key in unique_keys |
|
} |
|
|
|
invalid_keys = [] |
|
free_keys = [] |
|
unverified_keys = [] |
|
valid_keys = [] |
|
|
|
for future in concurrent.futures.as_completed( |
|
future_to_key |
|
): |
|
key = future_to_key[future] |
|
try: |
|
key_type = future.result() |
|
if key_type == "invalid": |
|
invalid_keys.append(key) |
|
elif key_type == "free": |
|
free_keys.append(key) |
|
elif key_type == "unverified": |
|
unverified_keys.append(key) |
|
elif key_type == "valid": |
|
valid_keys.append(key) |
|
except Exception as exc: |
|
logging.error(f"处理 KEY {key} 生成异常: {exc}") |
|
|
|
logging.info(f"无效 KEY:{invalid_keys}") |
|
logging.info(f"免费 KEY:{free_keys}") |
|
logging.info(f"未实名 KEY:{unverified_keys}") |
|
logging.info(f"有效 KEY:{valid_keys}") |
|
|
|
global invalid_keys_global, free_keys_global |
|
global unverified_keys_global, valid_keys_global |
|
invalid_keys_global = invalid_keys |
|
free_keys_global = free_keys |
|
unverified_keys_global = unverified_keys |
|
valid_keys_global = valid_keys |
|
|
|
else: |
|
logging.warning("环境变量 KEYS 未设置。") |
|
|
|
def process_key(key, test_model): |
|
""" |
|
处理单个 key,判断其类型。 |
|
""" |
|
credit_summary = get_credit_summary(key) |
|
if credit_summary is None: |
|
return "invalid" |
|
else: |
|
total_balance = credit_summary.get("total_balance", 0) |
|
if total_balance <= 0: |
|
return "free" |
|
else: |
|
if test_model_availability(key, test_model): |
|
return "valid" |
|
else: |
|
return "unverified" |
|
|
|
def get_all_models(api_key, sub_type): |
|
""" |
|
获取所有模型列表。 |
|
""" |
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
try: |
|
response = requests.get( |
|
MODELS_ENDPOINT, |
|
headers=headers, |
|
params={"sub_type": sub_type} |
|
) |
|
response.raise_for_status() |
|
data = response.json() |
|
if ( |
|
isinstance(data, dict) and |
|
'data' in data and |
|
isinstance(data['data'], list) |
|
): |
|
return [ |
|
model.get("id") for model in data["data"] |
|
if isinstance(model, dict) and "id" in model |
|
] |
|
else: |
|
logging.error("获取模型列表失败:响应数据格式不正确") |
|
return [] |
|
except requests.exceptions.RequestException as e: |
|
logging.error( |
|
f"获取模型列表失败," |
|
f"API Key:{api_key},错误信息:{e}" |
|
) |
|
return [] |
|
except (KeyError, TypeError) as e: |
|
logging.error( |
|
f"解析模型列表失败," |
|
f"API Key:{api_key},错误信息:{e}" |
|
) |
|
return [] |
|
|
|
def determine_request_type(model_name, model_list, free_model_list): |
|
""" |
|
根据用户请求的模型判断请求类型。 |
|
""" |
|
if model_name in free_model_list: |
|
return "free" |
|
elif model_name in model_list: |
|
return "paid" |
|
else: |
|
return "unknown" |
|
|
|
def select_key(request_type, model_name): |
|
""" |
|
根据请求类型和模型名称选择合适的 KEY, |
|
并实现轮询和重试机制。 |
|
""" |
|
if request_type == "free": |
|
available_keys = ( |
|
free_keys_global + |
|
unverified_keys_global + |
|
valid_keys_global |
|
) |
|
elif request_type == "paid": |
|
available_keys = unverified_keys_global + valid_keys_global |
|
else: |
|
available_keys = ( |
|
free_keys_global + |
|
unverified_keys_global + |
|
valid_keys_global |
|
) |
|
|
|
if not available_keys: |
|
return None |
|
|
|
current_index = model_key_indices.get(model_name, 0) |
|
|
|
for _ in range(len(available_keys)): |
|
key = available_keys[current_index % len(available_keys)] |
|
current_index += 1 |
|
|
|
if key_is_valid(key, request_type): |
|
model_key_indices[model_name] = current_index |
|
return key |
|
else: |
|
logging.warning( |
|
f"KEY {key} 无效或达到限制,尝试下一个 KEY" |
|
) |
|
|
|
model_key_indices[model_name] = 0 |
|
return None |
|
|
|
def key_is_valid(key, request_type): |
|
""" |
|
检查 KEY 是否有效, |
|
根据不同的请求类型进行不同的检查。 |
|
""" |
|
if request_type == "invalid": |
|
return False |
|
|
|
credit_summary = get_credit_summary(key) |
|
if credit_summary is None: |
|
return False |
|
|
|
total_balance = credit_summary.get("total_balance", 0) |
|
|
|
if request_type == "free": |
|
return True |
|
elif request_type == "paid" or request_type == "unverified": |
|
return total_balance > 0 |
|
else: |
|
return False |
|
|
|
def check_authorization(request): |
|
""" |
|
检查请求头中的 Authorization 字段 |
|
是否匹配环境变量 AUTHORIZATION_KEY。 |
|
""" |
|
authorization_key = os.environ.get("AUTHORIZATION_KEY") |
|
if not authorization_key: |
|
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,请设置后重试。") |
|
return False |
|
|
|
auth_header = request.headers.get('Authorization') |
|
if not auth_header: |
|
logging.warning("请求头中缺少 Authorization 字段。") |
|
return False |
|
|
|
if auth_header != f"Bearer {authorization_key}": |
|
logging.warning(f"无效的 Authorization 密钥:{auth_header}") |
|
return False |
|
|
|
return True |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(load_keys, 'interval', hours=1) |
|
scheduler.remove_all_jobs() |
|
scheduler.add_job(refresh_models, 'interval', hours=1) |
|
|
|
@app.route('/') |
|
def index(): |
|
current_time = time.time() |
|
one_minute_ago = current_time - 60 |
|
|
|
with data_lock: |
|
while request_timestamps and request_timestamps[0] < one_minute_ago: |
|
request_timestamps.pop(0) |
|
token_counts.pop(0) |
|
|
|
rpm = len(request_timestamps) |
|
tpm = sum(token_counts) |
|
|
|
return jsonify({"rpm": rpm, "tpm": tpm}) |
|
|
|
@app.route('/check_tokens', methods=['POST']) |
|
def check_tokens(): |
|
tokens = request.json.get('tokens', []) |
|
test_model = os.environ.get( |
|
"TEST_MODEL", |
|
"Pro/google/gemma-2-9b-it" |
|
) |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
future_to_token = { |
|
executor.submit( |
|
process_key, token, test_model |
|
): token for token in tokens |
|
} |
|
|
|
results = [] |
|
for future in concurrent.futures.as_completed(future_to_token): |
|
token = future_to_token[future] |
|
try: |
|
key_type = future.result() |
|
credit_summary = get_credit_summary(token) |
|
balance = ( |
|
credit_summary.get("total_balance", 0) |
|
if credit_summary else 0 |
|
) |
|
if key_type == "invalid": |
|
results.append( |
|
{ |
|
"token": token, |
|
"type": "无效 KEY", |
|
"balance": balance, |
|
"message": "无法获取额度信息" |
|
} |
|
) |
|
elif key_type == "free": |
|
results.append( |
|
{ |
|
"token": token, |
|
"type": "免费 KEY", |
|
"balance": balance, |
|
"message": "额度不足" |
|
} |
|
) |
|
elif key_type == "unverified": |
|
results.append( |
|
{ |
|
"token": token, |
|
"type": "未实名 KEY", |
|
"balance": balance, |
|
"message": "无法使用指定模型" |
|
} |
|
) |
|
elif key_type == "valid": |
|
results.append( |
|
{ |
|
"token": token, |
|
"type": "有效 KEY", |
|
"balance": balance, |
|
"message": "可以使用指定模型" |
|
} |
|
) |
|
except Exception as exc: |
|
logging.error( |
|
f"处理 Token {token} 生成异常: {exc}" |
|
) |
|
|
|
return jsonify(results) |
|
|
|
@app.route('/handsome/v1/models', methods=['GET']) |
|
def list_models(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
detailed_models = [] |
|
|
|
for model in text_models: |
|
detailed_models.append({ |
|
"id": model, |
|
"object": "model", |
|
"created": 1678888888, |
|
"owned_by": "openai", |
|
"permission": [ |
|
{ |
|
"id": f"modelperm-{uuid.uuid4().hex}", |
|
"object": "model_permission", |
|
"created": 1678888888, |
|
"allow_create_engine": False, |
|
"allow_sampling": True, |
|
"allow_logprobs": True, |
|
"allow_search_indices": False, |
|
"allow_view": True, |
|
"allow_fine_tuning": False, |
|
"organization": "*", |
|
"group": None, |
|
"is_blocking": False |
|
} |
|
], |
|
"root": model, |
|
"parent": None |
|
}) |
|
|
|
for model in embedding_models: |
|
detailed_models.append({ |
|
"id": model, |
|
"object": "model", |
|
"created": 1678888888, |
|
"owned_by": "openai", |
|
"permission": [ |
|
{ |
|
"id": f"modelperm-{uuid.uuid4().hex}", |
|
"object": "model_permission", |
|
"created": 1678888888, |
|
"allow_create_engine": False, |
|
"allow_sampling": True, |
|
"allow_logprobs": True, |
|
"allow_search_indices": False, |
|
"allow_view": True, |
|
"allow_fine_tuning": False, |
|
"organization": "*", |
|
"group": None, |
|
"is_blocking": False |
|
} |
|
], |
|
"root": model, |
|
"parent": None |
|
}) |
|
|
|
for model in image_models: |
|
detailed_models.append({ |
|
"id": model, |
|
"object": "model", |
|
"created": 1678888888, |
|
"owned_by": "openai", |
|
"permission": [ |
|
{ |
|
"id": f"modelperm-{uuid.uuid4().hex}", |
|
"object": "model_permission", |
|
"created": 1678888888, |
|
"allow_create_engine": False, |
|
"allow_sampling": True, |
|
"allow_logprobs": True, |
|
"allow_search_indices": False, |
|
"allow_view": True, |
|
"allow_fine_tuning": False, |
|
"organization": "*", |
|
"group": None, |
|
"is_blocking": False |
|
} |
|
], |
|
"root": model, |
|
"parent": None |
|
}) |
|
|
|
return jsonify({ |
|
"success": True, |
|
"data": detailed_models |
|
}) |
|
|
|
def get_billing_info(): |
|
keys = valid_keys_global + unverified_keys_global |
|
total_balance = 0 |
|
|
|
with concurrent.futures.ThreadPoolExecutor( |
|
max_workers=1000 |
|
) as executor: |
|
futures = [ |
|
executor.submit(get_credit_summary, key) for key in keys |
|
] |
|
|
|
for future in concurrent.futures.as_completed(futures): |
|
try: |
|
credit_summary = future.result() |
|
if credit_summary: |
|
total_balance += credit_summary.get( |
|
"total_balance", |
|
0 |
|
) |
|
except Exception as exc: |
|
logging.error(f"获取额度信息生成异常: {exc}") |
|
|
|
return total_balance |
|
|
|
@app.route('/handsome/v1/dashboard/billing/usage', methods=['GET']) |
|
def billing_usage(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
end_date = datetime.now() |
|
start_date = end_date - timedelta(days=30) |
|
|
|
daily_usage = [] |
|
current_date = start_date |
|
while current_date <= end_date: |
|
daily_usage.append({ |
|
"timestamp": int(current_date.timestamp()), |
|
"daily_usage": 0 |
|
}) |
|
current_date += timedelta(days=1) |
|
|
|
return jsonify({ |
|
"object": "list", |
|
"data": daily_usage, |
|
"total_usage": 0 |
|
}) |
|
|
|
@app.route('/handsome/v1/dashboard/billing/subscription', methods=['GET']) |
|
def billing_subscription(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
total_balance = get_billing_info() |
|
|
|
return jsonify({ |
|
"object": "billing_subscription", |
|
"has_payment_method": False, |
|
"canceled": False, |
|
"canceled_at": None, |
|
"delinquent": None, |
|
"access_until": int(datetime(9999, 12, 31).timestamp()), |
|
"soft_limit": 0, |
|
"hard_limit": total_balance, |
|
"system_hard_limit": total_balance, |
|
"soft_limit_usd": 0, |
|
"hard_limit_usd": total_balance, |
|
"system_hard_limit_usd": total_balance, |
|
"plan": { |
|
"name": "SiliconFlow API", |
|
"id": "siliconflow-api" |
|
}, |
|
"account_name": "SiliconFlow User", |
|
"po_number": None, |
|
"billing_email": None, |
|
"tax_ids": [], |
|
"billing_address": None, |
|
"business_address": None |
|
}) |
|
|
|
@app.route('/handsome/v1/embeddings', methods=['POST']) |
|
def handsome_embeddings(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
data = request.get_json() |
|
if not data or 'model' not in data: |
|
return jsonify({"error": "Invalid request data"}), 400 |
|
|
|
model_name = data['model'] |
|
request_type = determine_request_type( |
|
model_name, |
|
embedding_models, |
|
free_embedding_models |
|
) |
|
api_key = select_key(request_type, model_name) |
|
|
|
if not api_key: |
|
return jsonify( |
|
{ |
|
"error": ( |
|
"No available API key for this " |
|
"request type or all keys have " |
|
"reached their limits" |
|
) |
|
} |
|
), 429 |
|
|
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
try: |
|
start_time = time.time() |
|
response = requests.post( |
|
EMBEDDINGS_ENDPOINT, |
|
headers=headers, |
|
json=data, |
|
timeout=120 |
|
) |
|
|
|
if response.status_code == 429: |
|
return jsonify(response.json()), 429 |
|
|
|
response.raise_for_status() |
|
end_time = time.time() |
|
response_json = response.json() |
|
total_time = end_time - start_time |
|
|
|
try: |
|
prompt_tokens = response_json["usage"]["prompt_tokens"] |
|
embedding_data = response_json["data"] |
|
except (KeyError, ValueError, IndexError) as e: |
|
logging.error( |
|
f"解析响应 JSON 失败: {e}, " |
|
f"完整内容: {response_json}" |
|
) |
|
prompt_tokens = 0 |
|
embedding_data = [] |
|
|
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"提示token: {prompt_tokens}, " |
|
f"总共用时: {total_time:.4f}秒, " |
|
f"使用的模型: {model_name}" |
|
) |
|
|
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
token_counts.append(prompt_tokens) |
|
|
|
return jsonify({ |
|
"object": "list", |
|
"data": embedding_data, |
|
"model": model_name, |
|
"usage": { |
|
"prompt_tokens": prompt_tokens, |
|
"total_tokens": prompt_tokens |
|
} |
|
}) |
|
|
|
except requests.exceptions.RequestException as e: |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/handsome/v1/images/generations', methods=['POST']) |
|
def handsome_images_generations(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
data = request.get_json() |
|
if not data or 'model' not in data: |
|
return jsonify({"error": "Invalid request data"}), 400 |
|
|
|
model_name = data.get('model') |
|
|
|
request_type = determine_request_type( |
|
model_name, |
|
image_models, |
|
free_image_models |
|
) |
|
|
|
api_key = select_key(request_type, model_name) |
|
|
|
if not api_key: |
|
return jsonify( |
|
{ |
|
"error": ( |
|
"No available API key for this " |
|
"request type or all keys have " |
|
"reached their limits" |
|
) |
|
} |
|
), 429 |
|
|
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
response_data = {} |
|
|
|
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]: |
|
siliconflow_data = { |
|
"model": model_name, |
|
"prompt": data.get("prompt"), |
|
|
|
} |
|
|
|
if model_name == "black-forest-labs/FLUX.1-pro": |
|
siliconflow_data["width"] = data.get("width", 1024) |
|
siliconflow_data["height"] = data.get("height", 768) |
|
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False) |
|
siliconflow_data["image_prompt"] = data.get("image_prompt") |
|
siliconflow_data["steps"] = data.get("steps", 20) |
|
siliconflow_data["guidance"] = data.get("guidance", 3) |
|
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2) |
|
siliconflow_data["interval"] = data.get("interval", 2) |
|
siliconflow_data["output_format"] = data.get("output_format", "png") |
|
seed = data.get("seed") |
|
if isinstance(seed, int) and 0 < seed < 9999999999: |
|
siliconflow_data["seed"] = seed |
|
|
|
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0: |
|
siliconflow_data["width"] = 1024 |
|
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0: |
|
siliconflow_data["height"] = 768 |
|
|
|
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50: |
|
siliconflow_data["steps"] = 20 |
|
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5: |
|
siliconflow_data["guidance"] = 3 |
|
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6: |
|
siliconflow_data["safety_tolerance"] = 2 |
|
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 : |
|
siliconflow_data["interval"] = 2 |
|
else: |
|
siliconflow_data["image_size"] = data.get("image_size", "1024x1024") |
|
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False) |
|
seed = data.get("seed") |
|
if isinstance(seed, int) and 0 < seed < 9999999999: |
|
siliconflow_data["seed"] = seed |
|
|
|
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]: |
|
siliconflow_data["batch_size"] = data.get("n", 1) |
|
siliconflow_data["num_inference_steps"] = data.get("steps", 20) |
|
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5) |
|
siliconflow_data["negative_prompt"] = data.get("negative_prompt") |
|
if siliconflow_data["batch_size"] < 1: |
|
siliconflow_data["batch_size"] = 1 |
|
if siliconflow_data["batch_size"] > 4: |
|
siliconflow_data["batch_size"] = 4 |
|
|
|
if siliconflow_data["num_inference_steps"] < 1: |
|
siliconflow_data["num_inference_steps"] = 1 |
|
if siliconflow_data["num_inference_steps"] > 50: |
|
siliconflow_data["num_inference_steps"] = 50 |
|
|
|
if siliconflow_data["guidance_scale"] < 0: |
|
siliconflow_data["guidance_scale"] = 0 |
|
if siliconflow_data["guidance_scale"] > 100: |
|
siliconflow_data["guidance_scale"] = 100 |
|
|
|
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]: |
|
siliconflow_data["image_size"] = "1024x1024" |
|
|
|
try: |
|
start_time = time.time() |
|
response = requests.post( |
|
"https://api.siliconflow.cn/v1/images/generations", |
|
headers=headers, |
|
json=siliconflow_data, |
|
timeout=120 |
|
) |
|
|
|
if response.status_code == 429: |
|
return jsonify(response.json()), 429 |
|
|
|
response.raise_for_status() |
|
end_time = time.time() |
|
response_json = response.json() |
|
total_time = end_time - start_time |
|
|
|
try: |
|
images = response_json.get("images", []) |
|
openai_images = [] |
|
for item in images: |
|
if isinstance(item, dict) and "url" in item: |
|
image_url = item["url"] |
|
print(f"image_url: {image_url}") |
|
if data.get("response_format") == "b64_json": |
|
try: |
|
image_data = requests.get(image_url, stream=True).raw |
|
image = Image.open(image_data) |
|
buffered = io.BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
openai_images.append({"b64_json": img_str}) |
|
except Exception as e: |
|
logging.error(f"图片转base64失败: {e}") |
|
openai_images.append({"url": image_url}) |
|
else: |
|
openai_images.append({"url": image_url}) |
|
else: |
|
logging.error(f"无效的图片数据: {item}") |
|
openai_images.append({"url": item}) |
|
|
|
|
|
response_data = { |
|
"created": int(time.time()), |
|
"data": openai_images |
|
} |
|
except (KeyError, ValueError, IndexError) as e: |
|
logging.error( |
|
f"解析响应 JSON 失败: {e}, " |
|
f"完整内容: {response_json}" |
|
) |
|
response_data = { |
|
"created": int(time.time()), |
|
"data": [] |
|
} |
|
|
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"总共用时: {total_time:.4f}秒, " |
|
f"使用的模型: {model_name}" |
|
) |
|
|
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
token_counts.append(0) |
|
|
|
return jsonify(response_data) |
|
|
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"请求转发异常: {e}") |
|
return jsonify({"error": str(e)}), 500 |
|
else: |
|
return jsonify({"error": "Unsupported model"}), 400 |
|
|
|
@app.route('/handsome/v1/chat/completions', methods=['POST']) |
|
def handsome_chat_completions(): |
|
if not check_authorization(request): |
|
return jsonify({"error": "Unauthorized"}), 401 |
|
|
|
data = request.get_json() |
|
if not data or 'model' not in data: |
|
return jsonify({"error": "Invalid request data"}), 400 |
|
|
|
model_name = data['model'] |
|
|
|
request_type = determine_request_type( |
|
model_name, |
|
text_models + image_models, |
|
free_text_models + free_image_models |
|
) |
|
|
|
api_key = select_key(request_type, model_name) |
|
|
|
if not api_key: |
|
return jsonify( |
|
{ |
|
"error": ( |
|
"No available API key for this " |
|
"request type or all keys have " |
|
"reached their limits" |
|
) |
|
} |
|
), 429 |
|
|
|
headers = { |
|
"Authorization": f"Bearer {api_key}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
if model_name in image_models: |
|
user_content = "" |
|
messages = data.get("messages", []) |
|
for message in messages: |
|
if message["role"] == "user": |
|
if isinstance(message["content"], str): |
|
user_content += message["content"] + " " |
|
elif isinstance(message["content"], list): |
|
for item in message["content"]: |
|
if ( |
|
isinstance(item, dict) and |
|
item.get("type") == "text" |
|
): |
|
user_content += ( |
|
item.get("text", "") + |
|
" " |
|
) |
|
user_content = user_content.strip() |
|
|
|
siliconflow_data = { |
|
"model": model_name, |
|
"prompt": user_content, |
|
|
|
} |
|
if model_name == "black-forest-labs/FLUX.1-pro": |
|
siliconflow_data["width"] = data.get("width", 1024) |
|
siliconflow_data["height"] = data.get("height", 768) |
|
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False) |
|
siliconflow_data["image_prompt"] = data.get("image_prompt") |
|
siliconflow_data["steps"] = data.get("steps", 20) |
|
siliconflow_data["guidance"] = data.get("guidance", 3) |
|
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2) |
|
siliconflow_data["interval"] = data.get("interval", 2) |
|
siliconflow_data["output_format"] = data.get("output_format", "png") |
|
seed = data.get("seed") |
|
if isinstance(seed, int) and 0 < seed < 9999999999: |
|
siliconflow_data["seed"] = seed |
|
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0: |
|
siliconflow_data["width"] = 1024 |
|
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0: |
|
siliconflow_data["height"] = 768 |
|
|
|
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50: |
|
siliconflow_data["steps"] = 20 |
|
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5: |
|
siliconflow_data["guidance"] = 3 |
|
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6: |
|
siliconflow_data["safety_tolerance"] = 2 |
|
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 : |
|
siliconflow_data["interval"] = 2 |
|
else: |
|
siliconflow_data["image_size"] = "1024x1024" |
|
siliconflow_data["batch_size"] = 1 |
|
siliconflow_data["num_inference_steps"] = 20 |
|
siliconflow_data["guidance_scale"] = 7.5 |
|
siliconflow_data["prompt_enhancement"] = False |
|
|
|
if data.get("size"): |
|
siliconflow_data["image_size"] = data.get("size") |
|
if data.get("n"): |
|
siliconflow_data["batch_size"] = data.get("n") |
|
if data.get("steps"): |
|
siliconflow_data["num_inference_steps"] = data.get("steps") |
|
if data.get("guidance_scale"): |
|
siliconflow_data["guidance_scale"] = data.get("guidance_scale") |
|
if data.get("negative_prompt"): |
|
siliconflow_data["negative_prompt"] = data.get("negative_prompt") |
|
if data.get("seed"): |
|
siliconflow_data["seed"] = data.get("seed") |
|
if data.get("prompt_enhancement"): |
|
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement") |
|
|
|
if siliconflow_data["batch_size"] < 1: |
|
siliconflow_data["batch_size"] = 1 |
|
if siliconflow_data["batch_size"] > 4: |
|
siliconflow_data["batch_size"] = 4 |
|
|
|
if siliconflow_data["num_inference_steps"] < 1: |
|
siliconflow_data["num_inference_steps"] = 1 |
|
if siliconflow_data["num_inference_steps"] > 50: |
|
siliconflow_data["num_inference_steps"] = 50 |
|
|
|
if siliconflow_data["guidance_scale"] < 0: |
|
siliconflow_data["guidance_scale"] = 0 |
|
if siliconflow_data["guidance_scale"] > 100: |
|
siliconflow_data["guidance_scale"] = 100 |
|
|
|
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]: |
|
siliconflow_data["image_size"] = "1024x1024" |
|
|
|
try: |
|
start_time = time.time() |
|
response = requests.post( |
|
"https://api.siliconflow.cn/v1/images/generations", |
|
headers=headers, |
|
json=siliconflow_data, |
|
timeout=120, |
|
stream=data.get("stream", False) |
|
) |
|
|
|
if response.status_code == 429: |
|
return jsonify(response.json()), 429 |
|
|
|
if data.get("stream", False): |
|
def generate(): |
|
first_chunk_time = None |
|
full_response_content = "" |
|
try: |
|
response.raise_for_status() |
|
end_time = time.time() |
|
response_json = response.json() |
|
total_time = end_time - start_time |
|
|
|
images = response_json.get("images", []) |
|
|
|
image_url = "" |
|
if images and isinstance(images[0], dict) and "url" in images[0]: |
|
image_url = images[0]["url"] |
|
logging.info(f"Extracted image URL: {image_url}") |
|
elif images and isinstance(images[0], str): |
|
image_url = images[0] |
|
logging.info(f"Extracted image URL: {image_url}") |
|
|
|
markdown_image_link = f"![image]({image_url})" |
|
if image_url: |
|
chunk_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion.chunk", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": { |
|
"role": "assistant", |
|
"content": markdown_image_link |
|
}, |
|
"finish_reason": None |
|
} |
|
] |
|
} |
|
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') |
|
full_response_content = markdown_image_link |
|
else: |
|
chunk_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion.chunk", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": { |
|
"role": "assistant", |
|
"content": "Failed to generate image" |
|
}, |
|
"finish_reason": None |
|
} |
|
] |
|
} |
|
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') |
|
full_response_content = "Failed to generate image" |
|
|
|
end_chunk_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion.chunk", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": {}, |
|
"finish_reason": "stop" |
|
} |
|
] |
|
} |
|
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') |
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
token_counts.append(0) |
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"请求转发异常: {e}") |
|
error_chunk_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion.chunk", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": { |
|
"role": "assistant", |
|
"content": f"Error: {str(e)}" |
|
}, |
|
"finish_reason": None |
|
} |
|
] |
|
} |
|
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8') |
|
end_chunk_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion.chunk", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"delta": {}, |
|
"finish_reason": "stop" |
|
} |
|
] |
|
} |
|
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') |
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"使用的模型: {model_name}" |
|
) |
|
yield "data: [DONE]\n\n".encode('utf-8') |
|
return Response(stream_with_context(generate()), content_type='text/event-stream') |
|
|
|
else: |
|
response.raise_for_status() |
|
end_time = time.time() |
|
response_json = response.json() |
|
total_time = end_time - start_time |
|
|
|
try: |
|
images = response_json.get("images", []) |
|
|
|
image_url = "" |
|
if images and isinstance(images[0], dict) and "url" in images[0]: |
|
image_url = images[0]["url"] |
|
logging.info(f"Extracted image URL: {image_url}") |
|
elif images and isinstance(images[0], str): |
|
image_url = images[0] |
|
logging.info(f"Extracted image URL: {image_url}") |
|
|
|
markdown_image_link = f"![image]({image_url})" |
|
response_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"message": { |
|
"role": "assistant", |
|
"content": markdown_image_link if image_url else "Failed to generate image", |
|
}, |
|
"finish_reason": "stop", |
|
} |
|
], |
|
} |
|
except (KeyError, ValueError, IndexError) as e: |
|
logging.error( |
|
f"解析响应 JSON 失败: {e}, " |
|
f"完整内容: {response_json}" |
|
) |
|
response_data = { |
|
"id": f"chatcmpl-{uuid.uuid4()}", |
|
"object": "chat.completion", |
|
"created": int(time.time()), |
|
"model": model_name, |
|
"choices": [ |
|
{ |
|
"index": 0, |
|
"message": { |
|
"role": "assistant", |
|
"content": "Failed to process image data", |
|
}, |
|
"finish_reason": "stop", |
|
} |
|
], |
|
} |
|
|
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"总共用时: {total_time:.4f}秒, " |
|
f"使用的模型: {model_name}" |
|
) |
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
token_counts.append(0) |
|
return jsonify(response_data) |
|
|
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"请求转发异常: {e}") |
|
return jsonify({"error": str(e)}), 500 |
|
else: |
|
try: |
|
start_time = time.time() |
|
response = requests.post( |
|
TEST_MODEL_ENDPOINT, |
|
headers=headers, |
|
json=data, |
|
stream=data.get("stream", False), |
|
timeout=60 |
|
) |
|
|
|
if response.status_code == 429: |
|
return jsonify(response.json()), 429 |
|
|
|
if data.get("stream", False): |
|
def generate(): |
|
first_chunk_time = None |
|
full_response_content = "" |
|
for chunk in response.iter_content(chunk_size=1024): |
|
if chunk: |
|
if first_chunk_time is None: |
|
first_chunk_time = time.time() |
|
full_response_content += chunk.decode("utf-8") |
|
yield chunk |
|
|
|
end_time = time.time() |
|
first_token_time = ( |
|
first_chunk_time - start_time |
|
if first_chunk_time else 0 |
|
) |
|
total_time = end_time - start_time |
|
|
|
prompt_tokens = 0 |
|
completion_tokens = 0 |
|
response_content = "" |
|
for line in full_response_content.splitlines(): |
|
if line.startswith("data:"): |
|
line = line[5:].strip() |
|
if line == "[DONE]": |
|
continue |
|
try: |
|
response_json = json.loads(line) |
|
|
|
if ( |
|
"usage" in response_json and |
|
"completion_tokens" in response_json["usage"] |
|
): |
|
completion_tokens = response_json[ |
|
"usage" |
|
]["completion_tokens"] |
|
|
|
if ( |
|
"choices" in response_json and |
|
len(response_json["choices"]) > 0 and |
|
"delta" in response_json["choices"][0] and |
|
"content" in response_json[ |
|
"choices" |
|
][0]["delta"] |
|
): |
|
response_content += response_json[ |
|
"choices" |
|
][0]["delta"]["content"] |
|
|
|
if ( |
|
"usage" in response_json and |
|
"prompt_tokens" in response_json["usage"] |
|
): |
|
prompt_tokens = response_json[ |
|
"usage" |
|
]["prompt_tokens"] |
|
|
|
except ( |
|
KeyError, |
|
ValueError, |
|
IndexError |
|
) as e: |
|
logging.error( |
|
f"解析流式响应单行 JSON 失败: {e}, " |
|
f"行内容: {line}" |
|
) |
|
|
|
user_content = "" |
|
messages = data.get("messages", []) |
|
for message in messages: |
|
if message["role"] == "user": |
|
if isinstance(message["content"], str): |
|
user_content += message["content"] + " " |
|
elif isinstance(message["content"], list): |
|
for item in message["content"]: |
|
if ( |
|
isinstance(item, dict) and |
|
item.get("type") == "text" |
|
): |
|
user_content += ( |
|
item.get("text", "") + |
|
" " |
|
) |
|
|
|
user_content = user_content.strip() |
|
|
|
user_content_replaced = user_content.replace( |
|
'\n', '\\n' |
|
).replace('\r', '\\n') |
|
response_content_replaced = response_content.replace( |
|
'\n', '\\n' |
|
).replace('\r', '\\n') |
|
|
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"提示token: {prompt_tokens}, " |
|
f"输出token: {completion_tokens}, " |
|
f"首字用时: {first_token_time:.4f}秒, " |
|
f"总共用时: {total_time:.4f}秒, " |
|
f"使用的模型: {model_name}, " |
|
f"用户的内容: {user_content_replaced}, " |
|
f"输出的内容: {response_content_replaced}" |
|
) |
|
|
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
token_counts.append(prompt_tokens+completion_tokens) |
|
|
|
return Response( |
|
stream_with_context(generate()), |
|
content_type=response.headers['Content-Type'] |
|
) |
|
else: |
|
response.raise_for_status() |
|
end_time = time.time() |
|
response_json = response.json() |
|
total_time = end_time - start_time |
|
|
|
try: |
|
prompt_tokens = response_json["usage"]["prompt_tokens"] |
|
completion_tokens = response_json[ |
|
"usage" |
|
]["completion_tokens"] |
|
response_content = response_json[ |
|
"choices" |
|
][0]["message"]["content"] |
|
except (KeyError, ValueError, IndexError) as e: |
|
logging.error( |
|
f"解析非流式响应 JSON 失败: {e}, " |
|
f"完整内容: {response_json}" |
|
) |
|
prompt_tokens = 0 |
|
completion_tokens = 0 |
|
response_content = "" |
|
|
|
user_content = "" |
|
messages = data.get("messages", []) |
|
for message in messages: |
|
if message["role"] == "user": |
|
if isinstance(message["content"], str): |
|
user_content += message["content"] + " " |
|
elif isinstance(message["content"], list): |
|
for item in message["content"]: |
|
if ( |
|
isinstance(item, dict) and |
|
item.get("type") == "text" |
|
): |
|
user_content += ( |
|
item.get("text", "") + " " |
|
) |
|
|
|
user_content = user_content.strip() |
|
|
|
user_content_replaced = user_content.replace( |
|
'\n', '\\n' |
|
).replace('\r', '\\n') |
|
response_content_replaced = response_content.replace( |
|
'\n', '\\n' |
|
).replace('\r', '\\n') |
|
|
|
logging.info( |
|
f"使用的key: {api_key}, " |
|
f"提示token: {prompt_tokens}, " |
|
f"输出token: {completion_tokens}, " |
|
f"首字用时: 0, " |
|
f"总共用时: {total_time:.4f}秒, " |
|
f"使用的模型: {model_name}, " |
|
f"用户的内容: {user_content_replaced}, " |
|
f"输出的内容: {response_content_replaced}" |
|
) |
|
with data_lock: |
|
request_timestamps.append(time.time()) |
|
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: |
|
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) |
|
else: |
|
token_counts.append(0) |
|
|
|
return jsonify(response_json) |
|
|
|
except requests.exceptions.RequestException as e: |
|
logging.error(f"请求转发异常: {e}") |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
if __name__ == '__main__': |
|
import json |
|
logging.info(f"环境变量:{os.environ}") |
|
|
|
invalid_keys_global = [] |
|
free_keys_global = [] |
|
unverified_keys_global = [] |
|
valid_keys_global = [] |
|
|
|
load_keys() |
|
logging.info("程序启动时首次加载 keys 已执行") |
|
|
|
scheduler.start() |
|
|
|
logging.info("首次加载 keys 已手动触发执行") |
|
|
|
refresh_models() |
|
logging.info("首次刷新模型列表已手动触发执行") |
|
|
|
app.run( |
|
debug=False, |
|
host='0.0.0.0', |
|
port=int(os.environ.get('PORT', 7860)) |
|
) |