Spaces:
Runtime error
Runtime error
""" | |
It provides a leaderboard component. | |
""" | |
from collections import defaultdict | |
import enum | |
import math | |
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import firestore | |
from google.cloud.firestore_v1 import base_query | |
import gradio as gr | |
import lingua | |
import pandas as pd | |
from credentials import get_credentials_json | |
# TODO(#21): Fix auto-reload issue related to the initialization of Firebase. | |
firebase_admin.initialize_app(credentials.Certificate(get_credentials_json())) | |
db = firestore.client() | |
SUPPORTED_TRANSLATION_LANGUAGES = [ | |
language.name.capitalize() for language in lingua.Language.all() | |
] | |
class LeaderboardTab(enum.Enum): | |
SUMMARIZATION = "Summarization" | |
TRANSLATION = "Translation" | |
# Ref: https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing#scrollTo=QLGc6DwxyvQc pylint: disable=line-too-long | |
def compute_elo(battles, k=4, scale=400, base=10, initial_rating=1000): | |
rating = defaultdict(lambda: initial_rating) | |
for model_a, model_b, winner in battles[["model_a", "model_b", | |
"winner"]].itertuples(index=False): | |
rating_a = rating[model_a] | |
rating_b = rating[model_b] | |
expected_score_a = 1 / (1 + base**((rating_b - rating_a) / scale)) | |
expected_score_b = 1 / (1 + base**((rating_a - rating_b) / scale)) | |
scored_point_a = 0.5 if winner == "tie" else int(winner == "model_a") | |
rating[model_a] += k * (scored_point_a - expected_score_a) | |
rating[model_b] += k * (1 - scored_point_a - expected_score_b) | |
return rating | |
def get_docs(tab: str, | |
summary_lang: str = None, | |
source_lang: str = None, | |
target_lang: str = None): | |
if tab == LeaderboardTab.SUMMARIZATION: | |
collection = db.collection("arena-summarizations").order_by("timestamp") | |
if summary_lang: | |
collection = collection.where(filter=base_query.FieldFilter( | |
"model_a_response_language", "==", summary_lang.lower())).where( | |
filter=base_query.FieldFilter("model_b_response_language", "==", | |
summary_lang.lower())) | |
return collection.stream() | |
if tab == LeaderboardTab.TRANSLATION: | |
collection = db.collection("arena-translations").order_by("timestamp") | |
if source_lang: | |
collection = collection.where(filter=base_query.FieldFilter( | |
"source_language", "==", source_lang.lower())) | |
if target_lang: | |
collection = collection.where(filter=base_query.FieldFilter( | |
"target_language", "==", target_lang.lower())) | |
return collection.stream() | |
def load_elo_ratings(tab, | |
summary_lang: str = None, | |
source_lang: str = None, | |
target_lang: str = None): | |
docs = get_docs(tab, summary_lang, source_lang, target_lang) | |
battles = [] | |
for doc in docs: | |
data = doc.to_dict() | |
battles.append({ | |
"model_a": data["model_a"], | |
"model_b": data["model_b"], | |
"winner": data["winner"] | |
}) | |
if not battles: | |
return | |
battles = pd.DataFrame(battles) | |
ratings = compute_elo(battles) | |
sorted_ratings = sorted(ratings.items(), key=lambda x: x[1], reverse=True) | |
return [[i + 1, model, math.floor(rating + 0.5)] | |
for i, (model, rating) in enumerate(sorted_ratings)] | |
LEADERBOARD_UPDATE_INTERVAL = 600 # 10 minutes | |
LEADERBOARD_INFO = "The leaderboard is updated every 10 minutes." | |
DEFAULT_FILTER_OPTIONS = { | |
"summary_language": "English", | |
"source_language": "English", | |
"target_language": "Spanish" | |
} | |
def update_filtered_leaderboard(tab, summary_lang: str, source_lang: str, | |
target_lang: str): | |
new_value = load_elo_ratings(tab, summary_lang, source_lang, target_lang) | |
return gr.update(value=new_value) | |
def build_leaderboard(): | |
with gr.Tabs(): | |
with gr.Tab(LeaderboardTab.SUMMARIZATION.value): | |
with gr.Accordion("Filter", open=False): | |
with gr.Row(): | |
languages = [ | |
language.name.capitalize() for language in lingua.Language.all() | |
] | |
summary_language = gr.Dropdown( | |
choices=languages, | |
value=DEFAULT_FILTER_OPTIONS["summary_language"], | |
label="Summary language", | |
interactive=True) | |
with gr.Row(): | |
filtered_summarization = gr.DataFrame( | |
headers=["Rank", "Model", "Elo rating"], | |
datatype=["number", "str", "number"], | |
value=lambda: load_elo_ratings( | |
LeaderboardTab.SUMMARIZATION, DEFAULT_FILTER_OPTIONS[ | |
"summary_language"]), | |
elem_classes="leaderboard") | |
summary_language.change(fn=update_filtered_leaderboard, | |
inputs=[ | |
gr.State(LeaderboardTab.SUMMARIZATION), | |
summary_language, | |
gr.State(), | |
gr.State() | |
], | |
outputs=filtered_summarization) | |
gr.Dataframe(headers=["Rank", "Model", "Elo rating"], | |
datatype=["number", "str", "number"], | |
value=lambda: load_elo_ratings(LeaderboardTab.SUMMARIZATION), | |
every=LEADERBOARD_UPDATE_INTERVAL, | |
elem_classes="leaderboard") | |
gr.Markdown(LEADERBOARD_INFO) | |
with gr.Tab(LeaderboardTab.TRANSLATION.value): | |
with gr.Accordion("Filter", open=False): | |
with gr.Row(): | |
source_language = gr.Dropdown( | |
choices=SUPPORTED_TRANSLATION_LANGUAGES, | |
label="Source language", | |
value=DEFAULT_FILTER_OPTIONS["source_language"], | |
interactive=True) | |
target_language = gr.Dropdown( | |
choices=SUPPORTED_TRANSLATION_LANGUAGES, | |
label="Target language", | |
value=DEFAULT_FILTER_OPTIONS["target_language"], | |
interactive=True) | |
with gr.Row(): | |
filtered_translation = gr.DataFrame( | |
headers=["Rank", "Model", "Elo rating"], | |
datatype=["number", "str", "number"], | |
value=lambda: load_elo_ratings( | |
LeaderboardTab.TRANSLATION, DEFAULT_FILTER_OPTIONS[ | |
"source_language"], DEFAULT_FILTER_OPTIONS[ | |
"target_language"]), | |
elem_classes="leaderboard") | |
source_language.change(fn=update_filtered_leaderboard, | |
inputs=[ | |
gr.State(LeaderboardTab.TRANSLATION), | |
gr.State(), source_language, | |
target_language | |
], | |
outputs=filtered_translation) | |
target_language.change(fn=update_filtered_leaderboard, | |
inputs=[ | |
gr.State(LeaderboardTab.TRANSLATION), | |
gr.State(), source_language, | |
target_language | |
], | |
outputs=filtered_translation) | |
gr.Dataframe(headers=["Rank", "Model", "Elo rating"], | |
datatype=["number", "str", "number"], | |
value=lambda: load_elo_ratings(LeaderboardTab.TRANSLATION), | |
every=LEADERBOARD_UPDATE_INTERVAL, | |
elem_classes="leaderboard") | |
gr.Markdown(LEADERBOARD_INFO) | |