Spaces:
Runtime error
Runtime error
chore: 移除 GPU 限制
Browse files
app.py
CHANGED
@@ -1,854 +1,854 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import argparse
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import einops
|
7 |
-
import copy
|
8 |
-
import math
|
9 |
-
import time
|
10 |
-
import random
|
11 |
-
import spaces
|
12 |
-
import re
|
13 |
-
import uuid
|
14 |
-
|
15 |
-
from gradio_imageslider import ImageSlider
|
16 |
-
from PIL import Image
|
17 |
-
from BOOXEL.util import HWC3, upscale_image, fix_resize, convert_dtype, create_BOOXEL_model, load_QF_ckpt
|
18 |
-
from huggingface_hub import hf_hub_download
|
19 |
-
from pillow_heif import register_heif_opener
|
20 |
-
|
21 |
-
register_heif_opener()
|
22 |
-
|
23 |
-
max_64_bit_int = np.iinfo(np.int32).max
|
24 |
-
|
25 |
-
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
26 |
-
hf_hub_download(repo_id="ckpt/sd_xl_base_1.0", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="ckpt_sd_xl_base_1.0")
|
27 |
-
hf_hub_download(repo_id="yanranxiaoxi/booxel", filename="BOOXEL-v0.F.ckpt", local_dir="yanranxiaoxi_booxel", token=os.environ.get('MODEL_ACCESS_TOKEN'))
|
28 |
-
hf_hub_download(repo_id="yanranxiaoxi/booxel", filename="BOOXEL-v0.Q.ckpt", local_dir="yanranxiaoxi_booxel", token=os.environ.get('MODEL_ACCESS_TOKEN'))
|
29 |
-
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
|
30 |
-
|
31 |
-
parser = argparse.ArgumentParser()
|
32 |
-
parser.add_argument("--opt", type=str, default='options/BOOXEL_v0.yaml')
|
33 |
-
parser.add_argument("--ip", type=str, default='127.0.0.1')
|
34 |
-
parser.add_argument("--port", type=int, default='6688')
|
35 |
-
parser.add_argument("--no_llava", action='store_true', default=True)#False
|
36 |
-
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
|
37 |
-
parser.add_argument("--log_history", action='store_true', default=False)
|
38 |
-
parser.add_argument("--loading_half_params", action='store_true', default=False)#False
|
39 |
-
parser.add_argument("--use_tile_vae", action='store_true', default=True)#False
|
40 |
-
parser.add_argument("--encoder_tile_size", type=int, default=512)
|
41 |
-
parser.add_argument("--decoder_tile_size", type=int, default=64)
|
42 |
-
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
|
43 |
-
args = parser.parse_args()
|
44 |
-
|
45 |
-
if torch.cuda.device_count() > 0:
|
46 |
-
BOOXEL_device = 'cuda:0'
|
47 |
-
|
48 |
-
# 加载 BOOXEL
|
49 |
-
model, default_setting = create_BOOXEL_model(args.opt, BOOXEL_sign='Q', load_default_setting=True)
|
50 |
-
if args.loading_half_params:
|
51 |
-
model = model.half()
|
52 |
-
if args.use_tile_vae:
|
53 |
-
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
|
54 |
-
model = model.to(BOOXEL_device)
|
55 |
-
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
|
56 |
-
model.current_model = 'v0-Q'
|
57 |
-
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
|
58 |
-
|
59 |
-
def check_upload(input_image):
|
60 |
-
if input_image is None:
|
61 |
-
raise gr.Error("请提供要处理的图像。")
|
62 |
-
return gr.update(visible = True)
|
63 |
-
|
64 |
-
def update_seed(is_randomize_seed, seed):
|
65 |
-
if is_randomize_seed:
|
66 |
-
return random.randint(0, max_64_bit_int)
|
67 |
-
return seed
|
68 |
-
|
69 |
-
def reset():
|
70 |
-
return [
|
71 |
-
None,
|
72 |
-
0,
|
73 |
-
None,
|
74 |
-
None,
|
75 |
-
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
76 |
-
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
77 |
-
1,
|
78 |
-
1024,
|
79 |
-
1,
|
80 |
-
2,
|
81 |
-
50,
|
82 |
-
-1.0,
|
83 |
-
1.,
|
84 |
-
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
|
85 |
-
True,
|
86 |
-
random.randint(0, max_64_bit_int),
|
87 |
-
5,
|
88 |
-
1.003,
|
89 |
-
"Wavelet",
|
90 |
-
"fp32",
|
91 |
-
"fp32",
|
92 |
-
1.0,
|
93 |
-
True,
|
94 |
-
False,
|
95 |
-
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
|
96 |
-
0.,
|
97 |
-
"v0-Q",
|
98 |
-
"input",
|
99 |
-
6
|
100 |
-
]
|
101 |
-
|
102 |
-
def check(input_image):
|
103 |
-
if input_image is None:
|
104 |
-
raise gr.Error("请提供要处理的图像。")
|
105 |
-
|
106 |
-
@spaces.GPU(duration=420)
|
107 |
-
def stage1_process(
|
108 |
-
input_image,
|
109 |
-
gamma_correction,
|
110 |
-
diff_dtype,
|
111 |
-
ae_dtype
|
112 |
-
):
|
113 |
-
print('stage1_process ==>>')
|
114 |
-
if torch.cuda.device_count() == 0:
|
115 |
-
|
116 |
-
|
117 |
-
torch.cuda.set_device(BOOXEL_device)
|
118 |
-
LQ = HWC3(np.array(Image.open(input_image)))
|
119 |
-
LQ = fix_resize(LQ, 512)
|
120 |
-
# stage1
|
121 |
-
LQ = np.array(LQ) / 255 * 2 - 1
|
122 |
-
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(BOOXEL_device)[:, :3, :, :]
|
123 |
-
|
124 |
-
model.ae_dtype = convert_dtype(ae_dtype)
|
125 |
-
model.model.dtype = convert_dtype(diff_dtype)
|
126 |
-
|
127 |
-
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
128 |
-
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
129 |
-
# 伽玛校正
|
130 |
-
LQ = LQ / 255.0
|
131 |
-
LQ = np.power(LQ, gamma_correction)
|
132 |
-
LQ *= 255.0
|
133 |
-
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
134 |
-
print('<<== stage1_process')
|
135 |
-
return LQ, gr.update(visible = True)
|
136 |
-
|
137 |
-
def stage2_process(*args, **kwargs):
|
138 |
-
try:
|
139 |
-
return restore_in_Xmin(*args, **kwargs)
|
140 |
-
except Exception as e:
|
141 |
-
print('异常的类型 ' + str(type(e)))
|
142 |
-
if type(e).__name__ == "<class 'gradio.exceptions.Error'>":
|
143 |
-
print('异常的名称 ' + type(e).__name__)
|
144 |
-
raise e
|
145 |
-
|
146 |
-
def restore_in_Xmin(
|
147 |
-
noisy_image,
|
148 |
-
rotation,
|
149 |
-
denoise_image,
|
150 |
-
prompt,
|
151 |
-
a_prompt,
|
152 |
-
n_prompt,
|
153 |
-
num_samples,
|
154 |
-
min_size,
|
155 |
-
downscale,
|
156 |
-
upscale,
|
157 |
-
edm_steps,
|
158 |
-
s_stage1,
|
159 |
-
s_stage2,
|
160 |
-
s_cfg,
|
161 |
-
randomize_seed,
|
162 |
-
seed,
|
163 |
-
s_churn,
|
164 |
-
s_noise,
|
165 |
-
color_fix_type,
|
166 |
-
diff_dtype,
|
167 |
-
ae_dtype,
|
168 |
-
gamma_correction,
|
169 |
-
linear_CFG,
|
170 |
-
linear_s_stage2,
|
171 |
-
spt_linear_CFG,
|
172 |
-
spt_linear_s_stage2,
|
173 |
-
model_select,
|
174 |
-
output_format,
|
175 |
-
allocation
|
176 |
-
):
|
177 |
-
print("noisy_image:\n" + str(noisy_image))
|
178 |
-
print("denoise_image:\n" + str(denoise_image))
|
179 |
-
print("rotation: " + str(rotation))
|
180 |
-
print("prompt: " + str(prompt))
|
181 |
-
print("a_prompt: " + str(a_prompt))
|
182 |
-
print("n_prompt: " + str(n_prompt))
|
183 |
-
print("num_samples: " + str(num_samples))
|
184 |
-
print("min_size: " + str(min_size))
|
185 |
-
print("downscale: " + str(downscale))
|
186 |
-
print("upscale: " + str(upscale))
|
187 |
-
print("edm_steps: " + str(edm_steps))
|
188 |
-
print("s_stage1: " + str(s_stage1))
|
189 |
-
print("s_stage2: " + str(s_stage2))
|
190 |
-
print("s_cfg: " + str(s_cfg))
|
191 |
-
print("randomize_seed: " + str(randomize_seed))
|
192 |
-
print("seed: " + str(seed))
|
193 |
-
print("s_churn: " + str(s_churn))
|
194 |
-
print("s_noise: " + str(s_noise))
|
195 |
-
print("color_fix_type: " + str(color_fix_type))
|
196 |
-
print("diff_dtype: " + str(diff_dtype))
|
197 |
-
print("ae_dtype: " + str(ae_dtype))
|
198 |
-
print("gamma_correction: " + str(gamma_correction))
|
199 |
-
print("linear_CFG: " + str(linear_CFG))
|
200 |
-
print("linear_s_stage2: " + str(linear_s_stage2))
|
201 |
-
print("spt_linear_CFG: " + str(spt_linear_CFG))
|
202 |
-
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
|
203 |
-
print("model_select: " + str(model_select))
|
204 |
-
print("GPU time allocation: " + str(allocation) + " min")
|
205 |
-
print("output_format: " + str(output_format))
|
206 |
-
|
207 |
-
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
|
208 |
-
|
209 |
-
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
|
210 |
-
gr.Warning('错误的图像格式。当前仅支持 *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp 或 *.heic。')
|
211 |
-
return None, None, None, None
|
212 |
-
|
213 |
-
if output_format == "input":
|
214 |
-
if noisy_image is None:
|
215 |
-
output_format = "png"
|
216 |
-
else:
|
217 |
-
output_format = input_format
|
218 |
-
print("最终的 output_format:" + str(output_format))
|
219 |
-
|
220 |
-
if prompt is None:
|
221 |
-
prompt = ""
|
222 |
-
|
223 |
-
if a_prompt is None:
|
224 |
-
a_prompt = ""
|
225 |
-
|
226 |
-
if n_prompt is None:
|
227 |
-
n_prompt = ""
|
228 |
-
|
229 |
-
if prompt != "" and a_prompt != "":
|
230 |
-
a_prompt = prompt + ", " + a_prompt
|
231 |
-
else:
|
232 |
-
a_prompt = prompt + a_prompt
|
233 |
-
print("最终提示词:" + str(a_prompt))
|
234 |
-
|
235 |
-
denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
|
236 |
-
|
237 |
-
if rotation == 90:
|
238 |
-
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
239 |
-
elif rotation == 180:
|
240 |
-
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
241 |
-
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
242 |
-
elif rotation == -90:
|
243 |
-
denoise_image = np.array(list(zip(*denoise_image))[::-1])
|
244 |
-
|
245 |
-
if 1 < downscale:
|
246 |
-
input_height, input_width, input_channel = denoise_image.shape
|
247 |
-
denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
|
248 |
-
|
249 |
-
denoise_image = HWC3(denoise_image)
|
250 |
-
|
251 |
-
if torch.cuda.device_count() == 0:
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
if model_select != model.current_model:
|
256 |
-
print('载入 ' + model_select)
|
257 |
-
if model_select == 'v0-Q':
|
258 |
-
model.load_state_dict(ckpt_Q, strict=False)
|
259 |
-
elif model_select == 'v0-F':
|
260 |
-
model.load_state_dict(ckpt_F, strict=False)
|
261 |
-
model.current_model = model_select
|
262 |
-
|
263 |
-
model.ae_dtype = convert_dtype(ae_dtype)
|
264 |
-
model.model.dtype = convert_dtype(diff_dtype)
|
265 |
-
|
266 |
-
# 分配
|
267 |
-
if allocation == 1:
|
268 |
-
return restore_in_1min(
|
269 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
270 |
-
)
|
271 |
-
if allocation == 2:
|
272 |
-
return restore_in_2min(
|
273 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
274 |
-
)
|
275 |
-
if allocation == 3:
|
276 |
-
return restore_in_3min(
|
277 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
278 |
-
)
|
279 |
-
if allocation == 4:
|
280 |
-
return restore_in_4min(
|
281 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
282 |
-
)
|
283 |
-
if allocation == 5:
|
284 |
-
return restore_in_5min(
|
285 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
286 |
-
)
|
287 |
-
if allocation == 7:
|
288 |
-
return restore_in_7min(
|
289 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
290 |
-
)
|
291 |
-
if allocation == 8:
|
292 |
-
return restore_in_8min(
|
293 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
294 |
-
)
|
295 |
-
if allocation == 9:
|
296 |
-
return restore_in_9min(
|
297 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
298 |
-
)
|
299 |
-
if allocation == 10:
|
300 |
-
return restore_in_10min(
|
301 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
302 |
-
)
|
303 |
-
else:
|
304 |
-
return restore_in_6min(
|
305 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
306 |
-
)
|
307 |
-
|
308 |
-
@spaces.GPU(duration=59)
|
309 |
-
def restore_in_1min(*args, **kwargs):
|
310 |
-
return restore_on_gpu(*args, **kwargs)
|
311 |
-
|
312 |
-
@spaces.GPU(duration=119)
|
313 |
-
def restore_in_2min(*args, **kwargs):
|
314 |
-
return restore_on_gpu(*args, **kwargs)
|
315 |
-
|
316 |
-
@spaces.GPU(duration=179)
|
317 |
-
def restore_in_3min(*args, **kwargs):
|
318 |
-
return restore_on_gpu(*args, **kwargs)
|
319 |
-
|
320 |
-
@spaces.GPU(duration=239)
|
321 |
-
def restore_in_4min(*args, **kwargs):
|
322 |
-
return restore_on_gpu(*args, **kwargs)
|
323 |
-
|
324 |
-
@spaces.GPU(duration=299)
|
325 |
-
def restore_in_5min(*args, **kwargs):
|
326 |
-
return restore_on_gpu(*args, **kwargs)
|
327 |
-
|
328 |
-
@spaces.GPU(duration=359)
|
329 |
-
def restore_in_6min(*args, **kwargs):
|
330 |
-
return restore_on_gpu(*args, **kwargs)
|
331 |
-
|
332 |
-
@spaces.GPU(duration=419)
|
333 |
-
def restore_in_7min(*args, **kwargs):
|
334 |
-
return restore_on_gpu(*args, **kwargs)
|
335 |
-
|
336 |
-
@spaces.GPU(duration=479)
|
337 |
-
def restore_in_8min(*args, **kwargs):
|
338 |
-
return restore_on_gpu(*args, **kwargs)
|
339 |
-
|
340 |
-
@spaces.GPU(duration=539)
|
341 |
-
def restore_in_9min(*args, **kwargs):
|
342 |
-
return restore_on_gpu(*args, **kwargs)
|
343 |
-
|
344 |
-
@spaces.GPU(duration=599)
|
345 |
-
def restore_in_10min(*args, **kwargs):
|
346 |
-
return restore_on_gpu(*args, **kwargs)
|
347 |
-
|
348 |
-
def restore_on_gpu(
|
349 |
-
noisy_image,
|
350 |
-
input_image,
|
351 |
-
prompt,
|
352 |
-
a_prompt,
|
353 |
-
n_prompt,
|
354 |
-
num_samples,
|
355 |
-
min_size,
|
356 |
-
downscale,
|
357 |
-
upscale,
|
358 |
-
edm_steps,
|
359 |
-
s_stage1,
|
360 |
-
s_stage2,
|
361 |
-
s_cfg,
|
362 |
-
randomize_seed,
|
363 |
-
seed,
|
364 |
-
s_churn,
|
365 |
-
s_noise,
|
366 |
-
color_fix_type,
|
367 |
-
diff_dtype,
|
368 |
-
ae_dtype,
|
369 |
-
gamma_correction,
|
370 |
-
linear_CFG,
|
371 |
-
linear_s_stage2,
|
372 |
-
spt_linear_CFG,
|
373 |
-
spt_linear_s_stage2,
|
374 |
-
model_select,
|
375 |
-
output_format,
|
376 |
-
allocation
|
377 |
-
):
|
378 |
-
start = time.time()
|
379 |
-
print('restore ==>>')
|
380 |
-
|
381 |
-
torch.cuda.set_device(BOOXEL_device)
|
382 |
-
|
383 |
-
with torch.no_grad():
|
384 |
-
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
385 |
-
LQ = np.array(input_image) / 255.0
|
386 |
-
LQ = np.power(LQ, gamma_correction)
|
387 |
-
LQ *= 255.0
|
388 |
-
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
389 |
-
LQ = LQ / 255 * 2 - 1
|
390 |
-
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(BOOXEL_device)[:, :3, :, :]
|
391 |
-
captions = ['']
|
392 |
-
|
393 |
-
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
394 |
-
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
395 |
-
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
396 |
-
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
397 |
-
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
398 |
-
|
399 |
-
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
400 |
-
0, 255).astype(np.uint8)
|
401 |
-
results = [x_samples[i] for i in range(num_samples)]
|
402 |
-
torch.cuda.empty_cache()
|
403 |
-
|
404 |
-
# 所有结果的大小相同
|
405 |
-
input_height, input_width, input_channel = np.array(input_image).shape
|
406 |
-
result_height, result_width, result_channel = np.array(results[0]).shape
|
407 |
-
|
408 |
-
print('<<== restore')
|
409 |
-
end = time.time()
|
410 |
-
secondes = int(end - start)
|
411 |
-
minutes = math.floor(secondes / 60)
|
412 |
-
secondes = secondes - (minutes * 60)
|
413 |
-
hours = math.floor(minutes / 60)
|
414 |
-
minutes = minutes - (hours * 60)
|
415 |
-
information = ("如果想获得不同的结果,请重新开始。" if randomize_seed else "") + \
|
416 |
-
"如果您没有得到想要的图片,请在 « 图片描述 » 中添加更多细节。" + \
|
417 |
-
"等待 " + str(allocation) + " 分钟以避免 GPU 配额处罚,或也可以使用另一台计算机。" + \
|
418 |
-
"该图片已在 " + \
|
419 |
-
((str(hours) + " 小时 ") if hours != 0 else "") + \
|
420 |
-
((str(minutes) + " 分钟 ") if hours != 0 or minutes != 0 else "") + \
|
421 |
-
str(secondes) + " 秒 内生成。" + \
|
422 |
-
"新图像的分辨率为 " + str(result_width) + \
|
423 |
-
" 像素宽, " + str(result_height) + \
|
424 |
-
" 像素高,最终总分辨率为 " + f'{result_width * result_height:,}' + " 像素。"
|
425 |
-
print(information)
|
426 |
-
try:
|
427 |
-
print("初始分辨率:" + f'{input_width * input_height:,}')
|
428 |
-
print("最终分辨率:" + f'{result_width * result_height:,}')
|
429 |
-
print("edm_steps: " + str(edm_steps))
|
430 |
-
print("num_samples: " + str(num_samples))
|
431 |
-
print("缩小规模:" + str(downscale))
|
432 |
-
print("预计分钟数:" + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
|
433 |
-
except Exception as e:
|
434 |
-
print('估算错误')
|
435 |
-
|
436 |
-
# 滑动块中只能显示一张图像
|
437 |
-
return [noisy_image] + [results[0]], gr.update(label="可下载的结果为 *." + output_format + " 格式", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
|
438 |
-
|
439 |
-
def load_and_reset(param_setting):
|
440 |
-
print('load_and_reset ==>>')
|
441 |
-
if torch.cuda.device_count() == 0:
|
442 |
-
|
443 |
-
|
444 |
-
edm_steps = default_setting.edm_steps
|
445 |
-
s_stage2 = 1.0
|
446 |
-
s_stage1 = -1.0
|
447 |
-
s_churn = 5
|
448 |
-
s_noise = 1.003
|
449 |
-
# 积极提示词
|
450 |
-
a_prompt = '电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。'
|
451 |
-
# 消极提示词
|
452 |
-
n_prompt = '绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑'
|
453 |
-
color_fix_type = 'Wavelet'
|
454 |
-
spt_linear_s_stage2 = 0.0
|
455 |
-
linear_s_stage2 = False
|
456 |
-
linear_CFG = True
|
457 |
-
if param_setting == "Quality":
|
458 |
-
s_cfg = default_setting.s_cfg_Quality
|
459 |
-
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
|
460 |
-
model_select = "v0-Q"
|
461 |
-
elif param_setting == "Fidelity":
|
462 |
-
s_cfg = default_setting.s_cfg_Fidelity
|
463 |
-
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
|
464 |
-
model_select = "v0-F"
|
465 |
-
else:
|
466 |
-
raise NotImplementedError
|
467 |
-
gr.Info('参数已重置。')
|
468 |
-
print('<<== load_and_reset')
|
469 |
-
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
470 |
-
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
471 |
-
|
472 |
-
def log_information(result_gallery):
|
473 |
-
print('log_information')
|
474 |
-
if result_gallery is not None:
|
475 |
-
for i, result in enumerate(result_gallery):
|
476 |
-
print(result[0])
|
477 |
-
|
478 |
-
def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
|
479 |
-
print('on_select_result')
|
480 |
-
if result_gallery is not None:
|
481 |
-
for i, result in enumerate(result_gallery):
|
482 |
-
print(result[0])
|
483 |
-
return [result_slider[0], result_gallery[evt.index][0]]
|
484 |
-
|
485 |
-
# Gradio 接口
|
486 |
-
with gr.Blocks() as interface:
|
487 |
-
gr.Markdown("""
|
488 |
-
# BOOXEL —— Boost Pixel!
|
489 |
-
|
490 |
-
提供你的提示词,借助先进的生成实验和模型放大的力量,获取非凡的逼真画面。
|
491 |
-
|
492 |
-
我们收集了一个包含 600 万张高分辨率、高质量图像的真实世界采集的数据集用于模型训练,每张图像都关联了清晰且详尽的描述性文本注释。
|
493 |
-
|
494 |
-
我们提供了使用文本提示操纵恢复图像的能力,此外,还引入了消极质量提示和恢复指导的采样方法,以进一步提高生成图像的质量和保真度。
|
495 |
-
""")
|
496 |
-
|
497 |
-
input_image = gr.Image(label="输入图像(*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
|
498 |
-
rotation = gr.Radio([["不旋转", 0], ["⤵ 旋转 +90°", 90], ["↩ 旋转 180°", 180], ["⤴ 旋转 -90°", -90]], label="方向校正", info="在还原图像之前,将应用以下旋转功能;人工智能需要良好的定位才能理解内容", value=0, interactive=True, visible=False)
|
499 |
-
with gr.Group():
|
500 |
-
prompt = gr.Textbox(label="图像描述", info="帮助人工智能理解图像所代表的内容;尽可能多地描述,尤其是我们在原始图像上看不到的细节;可以用任何语言书写", value="", placeholder="长春,上午,秋天,英短蓝白猫,走在,花丛小径上,真实图像", lines=3)
|
501 |
-
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="像素放大倍率", info="1 到 10 倍放大倍率", value=2, interactive=True)
|
502 |
-
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min(不建议)", 8], ["9 min(不建议)", 9], ["10 min(不建议)", 10]], label="GPU 分配时间", info="设置为较低值可中止运行;设置为较高值后,下次运行会受到配额处罚", value=5, interactive=True)
|
503 |
-
|
504 |
-
with gr.Accordion("预降噪(可选)", open=False):
|
505 |
-
gamma_correction = gr.Slider(label="伽玛校正", info="较低的值图像将会更亮,反之亦然", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
506 |
-
denoise_button = gr.Button(value="预降噪")
|
507 |
-
denoise_image = gr.Image(label="降噪图像", show_label=True, type="filepath", sources=[], interactive = False, height=600, elem_id="image-s1")
|
508 |
-
denoise_information = gr.HTML(value="如果存在,去噪图像将被用于修复,而不是输入图像。", visible=False)
|
509 |
-
|
510 |
-
with gr.Accordion("高级选项", open=False):
|
511 |
-
output_format = gr.Radio([["与输入一致", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="生成的图像格式", info="文件扩展名", value="input", interactive=True)
|
512 |
-
a_prompt = gr.Textbox(label="补充图片说明",
|
513 |
-
info="完整的主图像描述",
|
514 |
-
value='电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。',
|
515 |
-
lines=3)
|
516 |
-
n_prompt = gr.Textbox(label="负面图像描述",
|
517 |
-
info="通过列出图像不代表的内容来消除歧义",
|
518 |
-
value='绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D
|
519 |
-
lines=3)
|
520 |
-
edm_steps = gr.Slider(label="步骤数", info="较低的值生成将会更快;较高的值将会获得更多的细节", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
521 |
-
num_samples = gr.Slider(label="生成数", info="生成的结果图像的数量", minimum=1, maximum=4 if not args.use_image_slider else 1
|
522 |
-
, value=1, step=1)
|
523 |
-
min_size = gr.Slider(label="最小尺寸", info="结果的最小高度和最小宽度", minimum=32, maximum=4096, value=1024, step=32)
|
524 |
-
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="缩减前因数", info="减少图像模糊,缩短处理时间", value=1, interactive=True)
|
525 |
-
with gr.Row():
|
526 |
-
with gr.Column():
|
527 |
-
model_select = gr.Radio([["质量 (v0-Q)", "v0-Q"], ["保真度 (v0-F)", "v0-F"]], label="模型选择", info="预训练模型", value="v0-Q",
|
528 |
-
interactive=True)
|
529 |
-
with gr.Column():
|
530 |
-
color_fix_type = gr.Radio([["None", "None"], ["AdaIn (改进风格)", "AdaIn"], ["Wavelet (针对 JPEG 伪图象)", "Wavelet"]], label="色彩修复类型", info="AdaIn 改进画面风格;Wavelet 用于 JPEG 伪图像", value="Wavelet",
|
531 |
-
interactive=True)
|
532 |
-
s_cfg = gr.Slider(label="文本指导等级", info="较低的值将更加跟随源图像;较高的值将更加跟随提示", minimum=1.0, maximum=15.0,
|
533 |
-
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
534 |
-
s_stage2 = gr.Slider(label="修复指导强度", minimum=0., maximum=1., value=1., step=0.05)
|
535 |
-
s_stage1 = gr.Slider(label="预降噪指导强度", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
536 |
-
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
537 |
-
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
538 |
-
with gr.Row():
|
539 |
-
with gr.Column():
|
540 |
-
linear_CFG = gr.Checkbox(label="线性 CFG", value=True)
|
541 |
-
spt_linear_CFG = gr.Slider(label="CFG 起始", minimum=1.0,
|
542 |
-
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
543 |
-
with gr.Column():
|
544 |
-
linear_s_stage2 = gr.Checkbox(label="线性修复指导", value=False)
|
545 |
-
spt_linear_s_stage2 = gr.Slider(label="指导起始", minimum=0.,
|
546 |
-
maximum=1., value=0., step=0.05)
|
547 |
-
with gr.Column():
|
548 |
-
diff_dtype = gr.Radio([["fp32 (精确)", "fp32"], ["fp16 (中等)", "fp16"], ["bf16 (快速)", "bf16"]], label="扩散数据类型", value="fp32",
|
549 |
-
interactive=True)
|
550 |
-
with gr.Column():
|
551 |
-
ae_dtype = gr.Radio([["fp32 (精确)", "fp32"], ["bf16 (快速)", "bf16"]], label="自动编码器数据类型", value="fp32",
|
552 |
-
interactive=True)
|
553 |
-
randomize_seed = gr.Checkbox(label = "\U0001F3B2 随机种子", value=True, info="如果选中,结果将总是不同")
|
554 |
-
seed = gr.Slider(label="种子", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
|
555 |
-
with gr.Group():
|
556 |
-
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="预配", value="Quality")
|
557 |
-
restart_button = gr.Button(value="应用预配")
|
558 |
-
|
559 |
-
with gr.Column():
|
560 |
-
diffusion_button = gr.Button(value="开始处理", variant="primary", elem_id="process_button")
|
561 |
-
reset_btn = gr.Button(value="重新初始化页面", variant="stop", elem_id="reset_button", visible=False)
|
562 |
-
|
563 |
-
restore_information = gr.HTML(value="重启进程,获得另一个结果。", visible=False)
|
564 |
-
result_slider = ImageSlider(label='对比结果', show_label=True, interactive=False, elem_id="slider1", show_download_button=False)
|
565 |
-
result_gallery = gr.Gallery(label='可下载的结果', show_label=True, interactive=False, elem_id="gallery1")
|
566 |
-
|
567 |
-
gr.Examples(
|
568 |
-
examples = [
|
569 |
-
[
|
570 |
-
"./Examples/Example1.png",
|
571 |
-
0,
|
572 |
-
None,
|
573 |
-
"一群人,快乐地在街上行走,逼真,8K,极其精细",
|
574 |
-
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
575 |
-
"
|
576 |
-
2,
|
577 |
-
1024,
|
578 |
-
1,
|
579 |
-
8,
|
580 |
-
200,
|
581 |
-
-1,
|
582 |
-
1,
|
583 |
-
7.5,
|
584 |
-
False,
|
585 |
-
42,
|
586 |
-
5,
|
587 |
-
1.003,
|
588 |
-
"AdaIn",
|
589 |
-
"fp16",
|
590 |
-
"bf16",
|
591 |
-
1.0,
|
592 |
-
True,
|
593 |
-
4,
|
594 |
-
False,
|
595 |
-
0.,
|
596 |
-
"v0-Q",
|
597 |
-
"input",
|
598 |
-
5
|
599 |
-
],
|
600 |
-
[
|
601 |
-
"./Examples/Example2.jpeg",
|
602 |
-
0,
|
603 |
-
None,
|
604 |
-
"一只虎斑猫的头部,在一间房子里,逼真,8K,极其细腻。",
|
605 |
-
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
606 |
-
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG
|
607 |
-
1,
|
608 |
-
1024,
|
609 |
-
1,
|
610 |
-
1,
|
611 |
-
200,
|
612 |
-
-1,
|
613 |
-
1,
|
614 |
-
7.5,
|
615 |
-
False,
|
616 |
-
42,
|
617 |
-
5,
|
618 |
-
1.003,
|
619 |
-
"Wavelet",
|
620 |
-
"fp16",
|
621 |
-
"bf16",
|
622 |
-
1.0,
|
623 |
-
True,
|
624 |
-
4,
|
625 |
-
False,
|
626 |
-
0.,
|
627 |
-
"v0-Q",
|
628 |
-
"input",
|
629 |
-
4
|
630 |
-
],
|
631 |
-
[
|
632 |
-
"./Examples/Example3.webp",
|
633 |
-
0,
|
634 |
-
None,
|
635 |
-
"一个红色的苹果",
|
636 |
-
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
637 |
-
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
638 |
-
1,
|
639 |
-
1024,
|
640 |
-
1,
|
641 |
-
1,
|
642 |
-
200,
|
643 |
-
-1,
|
644 |
-
1,
|
645 |
-
7.5,
|
646 |
-
False,
|
647 |
-
42,
|
648 |
-
5,
|
649 |
-
1.003,
|
650 |
-
"Wavelet",
|
651 |
-
"fp16",
|
652 |
-
"bf16",
|
653 |
-
1.0,
|
654 |
-
True,
|
655 |
-
4,
|
656 |
-
False,
|
657 |
-
0.,
|
658 |
-
"v0-Q",
|
659 |
-
"input",
|
660 |
-
4
|
661 |
-
],
|
662 |
-
[
|
663 |
-
"./Examples/Example3.webp",
|
664 |
-
0,
|
665 |
-
None,
|
666 |
-
"一块红色大理石",
|
667 |
-
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
668 |
-
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
669 |
-
1,
|
670 |
-
1024,
|
671 |
-
1,
|
672 |
-
1,
|
673 |
-
200,
|
674 |
-
-1,
|
675 |
-
1,
|
676 |
-
7.5,
|
677 |
-
False,
|
678 |
-
42,
|
679 |
-
5,
|
680 |
-
1.003,
|
681 |
-
"Wavelet",
|
682 |
-
"fp16",
|
683 |
-
"bf16",
|
684 |
-
1.0,
|
685 |
-
True,
|
686 |
-
4,
|
687 |
-
False,
|
688 |
-
0.,
|
689 |
-
"v0-Q",
|
690 |
-
"input",
|
691 |
-
4
|
692 |
-
],
|
693 |
-
],
|
694 |
-
run_on_click = True,
|
695 |
-
fn = stage2_process,
|
696 |
-
inputs = [
|
697 |
-
input_image,
|
698 |
-
rotation,
|
699 |
-
denoise_image,
|
700 |
-
prompt,
|
701 |
-
a_prompt,
|
702 |
-
n_prompt,
|
703 |
-
num_samples,
|
704 |
-
min_size,
|
705 |
-
downscale,
|
706 |
-
upscale,
|
707 |
-
edm_steps,
|
708 |
-
s_stage1,
|
709 |
-
s_stage2,
|
710 |
-
s_cfg,
|
711 |
-
randomize_seed,
|
712 |
-
seed,
|
713 |
-
s_churn,
|
714 |
-
s_noise,
|
715 |
-
color_fix_type,
|
716 |
-
diff_dtype,
|
717 |
-
ae_dtype,
|
718 |
-
gamma_correction,
|
719 |
-
linear_CFG,
|
720 |
-
linear_s_stage2,
|
721 |
-
spt_linear_CFG,
|
722 |
-
spt_linear_s_stage2,
|
723 |
-
model_select,
|
724 |
-
output_format,
|
725 |
-
allocation
|
726 |
-
],
|
727 |
-
outputs = [
|
728 |
-
result_slider,
|
729 |
-
result_gallery,
|
730 |
-
restore_information,
|
731 |
-
reset_btn
|
732 |
-
],
|
733 |
-
cache_examples = False,
|
734 |
-
)
|
735 |
-
|
736 |
-
input_image.upload(fn = check_upload, inputs = [
|
737 |
-
input_image
|
738 |
-
], outputs = [
|
739 |
-
rotation
|
740 |
-
], queue = False, show_progress = False)
|
741 |
-
|
742 |
-
denoise_button.click(fn = check, inputs = [
|
743 |
-
input_image
|
744 |
-
], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
|
745 |
-
input_image,
|
746 |
-
gamma_correction,
|
747 |
-
diff_dtype,
|
748 |
-
ae_dtype
|
749 |
-
], outputs=[
|
750 |
-
denoise_image,
|
751 |
-
denoise_information
|
752 |
-
])
|
753 |
-
|
754 |
-
diffusion_button.click(fn = update_seed, inputs = [
|
755 |
-
randomize_seed,
|
756 |
-
seed
|
757 |
-
], outputs = [
|
758 |
-
seed
|
759 |
-
], queue = False, show_progress = False).then(fn = check, inputs = [
|
760 |
-
input_image
|
761 |
-
], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
|
762 |
-
input_image,
|
763 |
-
rotation,
|
764 |
-
denoise_image,
|
765 |
-
prompt,
|
766 |
-
a_prompt,
|
767 |
-
n_prompt,
|
768 |
-
num_samples,
|
769 |
-
min_size,
|
770 |
-
downscale,
|
771 |
-
upscale,
|
772 |
-
edm_steps,
|
773 |
-
s_stage1,
|
774 |
-
s_stage2,
|
775 |
-
s_cfg,
|
776 |
-
randomize_seed,
|
777 |
-
seed,
|
778 |
-
s_churn,
|
779 |
-
s_noise,
|
780 |
-
color_fix_type,
|
781 |
-
diff_dtype,
|
782 |
-
ae_dtype,
|
783 |
-
gamma_correction,
|
784 |
-
linear_CFG,
|
785 |
-
linear_s_stage2,
|
786 |
-
spt_linear_CFG,
|
787 |
-
spt_linear_s_stage2,
|
788 |
-
model_select,
|
789 |
-
output_format,
|
790 |
-
allocation
|
791 |
-
], outputs = [
|
792 |
-
result_slider,
|
793 |
-
result_gallery,
|
794 |
-
restore_information,
|
795 |
-
reset_btn
|
796 |
-
]).success(fn = log_information, inputs = [
|
797 |
-
result_gallery
|
798 |
-
], outputs = [], queue = False, show_progress = False)
|
799 |
-
|
800 |
-
result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
|
801 |
-
result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
|
802 |
-
|
803 |
-
restart_button.click(fn = load_and_reset, inputs = [
|
804 |
-
param_setting
|
805 |
-
], outputs = [
|
806 |
-
edm_steps,
|
807 |
-
s_cfg,
|
808 |
-
s_stage2,
|
809 |
-
s_stage1,
|
810 |
-
s_churn,
|
811 |
-
s_noise,
|
812 |
-
a_prompt,
|
813 |
-
n_prompt,
|
814 |
-
color_fix_type,
|
815 |
-
linear_CFG,
|
816 |
-
linear_s_stage2,
|
817 |
-
spt_linear_CFG,
|
818 |
-
spt_linear_s_stage2,
|
819 |
-
model_select
|
820 |
-
])
|
821 |
-
|
822 |
-
reset_btn.click(fn = reset, inputs = [], outputs = [
|
823 |
-
input_image,
|
824 |
-
rotation,
|
825 |
-
denoise_image,
|
826 |
-
prompt,
|
827 |
-
a_prompt,
|
828 |
-
n_prompt,
|
829 |
-
num_samples,
|
830 |
-
min_size,
|
831 |
-
downscale,
|
832 |
-
upscale,
|
833 |
-
edm_steps,
|
834 |
-
s_stage1,
|
835 |
-
s_stage2,
|
836 |
-
s_cfg,
|
837 |
-
randomize_seed,
|
838 |
-
seed,
|
839 |
-
s_churn,
|
840 |
-
s_noise,
|
841 |
-
color_fix_type,
|
842 |
-
diff_dtype,
|
843 |
-
ae_dtype,
|
844 |
-
gamma_correction,
|
845 |
-
linear_CFG,
|
846 |
-
linear_s_stage2,
|
847 |
-
spt_linear_CFG,
|
848 |
-
spt_linear_s_stage2,
|
849 |
-
model_select,
|
850 |
-
output_format,
|
851 |
-
allocation
|
852 |
-
], queue = False, show_progress = False)
|
853 |
-
|
854 |
interface.queue(10).launch()
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import argparse
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import einops
|
7 |
+
import copy
|
8 |
+
import math
|
9 |
+
import time
|
10 |
+
import random
|
11 |
+
import spaces
|
12 |
+
import re
|
13 |
+
import uuid
|
14 |
+
|
15 |
+
from gradio_imageslider import ImageSlider
|
16 |
+
from PIL import Image
|
17 |
+
from BOOXEL.util import HWC3, upscale_image, fix_resize, convert_dtype, create_BOOXEL_model, load_QF_ckpt
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
from pillow_heif import register_heif_opener
|
20 |
+
|
21 |
+
register_heif_opener()
|
22 |
+
|
23 |
+
max_64_bit_int = np.iinfo(np.int32).max
|
24 |
+
|
25 |
+
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
26 |
+
hf_hub_download(repo_id="ckpt/sd_xl_base_1.0", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="ckpt_sd_xl_base_1.0")
|
27 |
+
hf_hub_download(repo_id="yanranxiaoxi/booxel", filename="BOOXEL-v0.F.ckpt", local_dir="yanranxiaoxi_booxel", token=os.environ.get('MODEL_ACCESS_TOKEN'))
|
28 |
+
hf_hub_download(repo_id="yanranxiaoxi/booxel", filename="BOOXEL-v0.Q.ckpt", local_dir="yanranxiaoxi_booxel", token=os.environ.get('MODEL_ACCESS_TOKEN'))
|
29 |
+
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
|
30 |
+
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument("--opt", type=str, default='options/BOOXEL_v0.yaml')
|
33 |
+
parser.add_argument("--ip", type=str, default='127.0.0.1')
|
34 |
+
parser.add_argument("--port", type=int, default='6688')
|
35 |
+
parser.add_argument("--no_llava", action='store_true', default=True)#False
|
36 |
+
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
|
37 |
+
parser.add_argument("--log_history", action='store_true', default=False)
|
38 |
+
parser.add_argument("--loading_half_params", action='store_true', default=False)#False
|
39 |
+
parser.add_argument("--use_tile_vae", action='store_true', default=True)#False
|
40 |
+
parser.add_argument("--encoder_tile_size", type=int, default=512)
|
41 |
+
parser.add_argument("--decoder_tile_size", type=int, default=64)
|
42 |
+
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
|
43 |
+
args = parser.parse_args()
|
44 |
+
|
45 |
+
if torch.cuda.device_count() > 0:
|
46 |
+
BOOXEL_device = 'cuda:0'
|
47 |
+
|
48 |
+
# 加载 BOOXEL
|
49 |
+
model, default_setting = create_BOOXEL_model(args.opt, BOOXEL_sign='Q', load_default_setting=True)
|
50 |
+
if args.loading_half_params:
|
51 |
+
model = model.half()
|
52 |
+
if args.use_tile_vae:
|
53 |
+
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
|
54 |
+
model = model.to(BOOXEL_device)
|
55 |
+
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
|
56 |
+
model.current_model = 'v0-Q'
|
57 |
+
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
|
58 |
+
|
59 |
+
def check_upload(input_image):
|
60 |
+
if input_image is None:
|
61 |
+
raise gr.Error("请提供要处理的图像。")
|
62 |
+
return gr.update(visible = True)
|
63 |
+
|
64 |
+
def update_seed(is_randomize_seed, seed):
|
65 |
+
if is_randomize_seed:
|
66 |
+
return random.randint(0, max_64_bit_int)
|
67 |
+
return seed
|
68 |
+
|
69 |
+
def reset():
|
70 |
+
return [
|
71 |
+
None,
|
72 |
+
0,
|
73 |
+
None,
|
74 |
+
None,
|
75 |
+
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
76 |
+
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
77 |
+
1,
|
78 |
+
1024,
|
79 |
+
1,
|
80 |
+
2,
|
81 |
+
50,
|
82 |
+
-1.0,
|
83 |
+
1.,
|
84 |
+
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
|
85 |
+
True,
|
86 |
+
random.randint(0, max_64_bit_int),
|
87 |
+
5,
|
88 |
+
1.003,
|
89 |
+
"Wavelet",
|
90 |
+
"fp32",
|
91 |
+
"fp32",
|
92 |
+
1.0,
|
93 |
+
True,
|
94 |
+
False,
|
95 |
+
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
|
96 |
+
0.,
|
97 |
+
"v0-Q",
|
98 |
+
"input",
|
99 |
+
6
|
100 |
+
]
|
101 |
+
|
102 |
+
def check(input_image):
|
103 |
+
if input_image is None:
|
104 |
+
raise gr.Error("请提供要处理的图像。")
|
105 |
+
|
106 |
+
@spaces.GPU(duration=420)
|
107 |
+
def stage1_process(
|
108 |
+
input_image,
|
109 |
+
gamma_correction,
|
110 |
+
diff_dtype,
|
111 |
+
ae_dtype
|
112 |
+
):
|
113 |
+
print('stage1_process ==>>')
|
114 |
+
# if torch.cuda.device_count() == 0:
|
115 |
+
# gr.Warning('将此 Spaces 设置为 GPU 配置以使其正常工作。')
|
116 |
+
# return None, None
|
117 |
+
torch.cuda.set_device(BOOXEL_device)
|
118 |
+
LQ = HWC3(np.array(Image.open(input_image)))
|
119 |
+
LQ = fix_resize(LQ, 512)
|
120 |
+
# stage1
|
121 |
+
LQ = np.array(LQ) / 255 * 2 - 1
|
122 |
+
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(BOOXEL_device)[:, :3, :, :]
|
123 |
+
|
124 |
+
model.ae_dtype = convert_dtype(ae_dtype)
|
125 |
+
model.model.dtype = convert_dtype(diff_dtype)
|
126 |
+
|
127 |
+
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
128 |
+
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
129 |
+
# 伽玛校正
|
130 |
+
LQ = LQ / 255.0
|
131 |
+
LQ = np.power(LQ, gamma_correction)
|
132 |
+
LQ *= 255.0
|
133 |
+
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
134 |
+
print('<<== stage1_process')
|
135 |
+
return LQ, gr.update(visible = True)
|
136 |
+
|
137 |
+
def stage2_process(*args, **kwargs):
|
138 |
+
try:
|
139 |
+
return restore_in_Xmin(*args, **kwargs)
|
140 |
+
except Exception as e:
|
141 |
+
print('异常的类型 ' + str(type(e)))
|
142 |
+
if type(e).__name__ == "<class 'gradio.exceptions.Error'>":
|
143 |
+
print('异常的名称 ' + type(e).__name__)
|
144 |
+
raise e
|
145 |
+
|
146 |
+
def restore_in_Xmin(
|
147 |
+
noisy_image,
|
148 |
+
rotation,
|
149 |
+
denoise_image,
|
150 |
+
prompt,
|
151 |
+
a_prompt,
|
152 |
+
n_prompt,
|
153 |
+
num_samples,
|
154 |
+
min_size,
|
155 |
+
downscale,
|
156 |
+
upscale,
|
157 |
+
edm_steps,
|
158 |
+
s_stage1,
|
159 |
+
s_stage2,
|
160 |
+
s_cfg,
|
161 |
+
randomize_seed,
|
162 |
+
seed,
|
163 |
+
s_churn,
|
164 |
+
s_noise,
|
165 |
+
color_fix_type,
|
166 |
+
diff_dtype,
|
167 |
+
ae_dtype,
|
168 |
+
gamma_correction,
|
169 |
+
linear_CFG,
|
170 |
+
linear_s_stage2,
|
171 |
+
spt_linear_CFG,
|
172 |
+
spt_linear_s_stage2,
|
173 |
+
model_select,
|
174 |
+
output_format,
|
175 |
+
allocation
|
176 |
+
):
|
177 |
+
print("noisy_image:\n" + str(noisy_image))
|
178 |
+
print("denoise_image:\n" + str(denoise_image))
|
179 |
+
print("rotation: " + str(rotation))
|
180 |
+
print("prompt: " + str(prompt))
|
181 |
+
print("a_prompt: " + str(a_prompt))
|
182 |
+
print("n_prompt: " + str(n_prompt))
|
183 |
+
print("num_samples: " + str(num_samples))
|
184 |
+
print("min_size: " + str(min_size))
|
185 |
+
print("downscale: " + str(downscale))
|
186 |
+
print("upscale: " + str(upscale))
|
187 |
+
print("edm_steps: " + str(edm_steps))
|
188 |
+
print("s_stage1: " + str(s_stage1))
|
189 |
+
print("s_stage2: " + str(s_stage2))
|
190 |
+
print("s_cfg: " + str(s_cfg))
|
191 |
+
print("randomize_seed: " + str(randomize_seed))
|
192 |
+
print("seed: " + str(seed))
|
193 |
+
print("s_churn: " + str(s_churn))
|
194 |
+
print("s_noise: " + str(s_noise))
|
195 |
+
print("color_fix_type: " + str(color_fix_type))
|
196 |
+
print("diff_dtype: " + str(diff_dtype))
|
197 |
+
print("ae_dtype: " + str(ae_dtype))
|
198 |
+
print("gamma_correction: " + str(gamma_correction))
|
199 |
+
print("linear_CFG: " + str(linear_CFG))
|
200 |
+
print("linear_s_stage2: " + str(linear_s_stage2))
|
201 |
+
print("spt_linear_CFG: " + str(spt_linear_CFG))
|
202 |
+
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
|
203 |
+
print("model_select: " + str(model_select))
|
204 |
+
print("GPU time allocation: " + str(allocation) + " min")
|
205 |
+
print("output_format: " + str(output_format))
|
206 |
+
|
207 |
+
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
|
208 |
+
|
209 |
+
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
|
210 |
+
gr.Warning('错误的图像格式。当前仅支持 *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp 或 *.heic。')
|
211 |
+
return None, None, None, None
|
212 |
+
|
213 |
+
if output_format == "input":
|
214 |
+
if noisy_image is None:
|
215 |
+
output_format = "png"
|
216 |
+
else:
|
217 |
+
output_format = input_format
|
218 |
+
print("最终的 output_format:" + str(output_format))
|
219 |
+
|
220 |
+
if prompt is None:
|
221 |
+
prompt = ""
|
222 |
+
|
223 |
+
if a_prompt is None:
|
224 |
+
a_prompt = ""
|
225 |
+
|
226 |
+
if n_prompt is None:
|
227 |
+
n_prompt = ""
|
228 |
+
|
229 |
+
if prompt != "" and a_prompt != "":
|
230 |
+
a_prompt = prompt + ", " + a_prompt
|
231 |
+
else:
|
232 |
+
a_prompt = prompt + a_prompt
|
233 |
+
print("最终提示词:" + str(a_prompt))
|
234 |
+
|
235 |
+
denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
|
236 |
+
|
237 |
+
if rotation == 90:
|
238 |
+
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
239 |
+
elif rotation == 180:
|
240 |
+
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
241 |
+
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
242 |
+
elif rotation == -90:
|
243 |
+
denoise_image = np.array(list(zip(*denoise_image))[::-1])
|
244 |
+
|
245 |
+
if 1 < downscale:
|
246 |
+
input_height, input_width, input_channel = denoise_image.shape
|
247 |
+
denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
|
248 |
+
|
249 |
+
denoise_image = HWC3(denoise_image)
|
250 |
+
|
251 |
+
# if torch.cuda.device_count() == 0:
|
252 |
+
# gr.Warning('将此 Spaces 设置为 GPU 配置以使其正常工作。')
|
253 |
+
# return [noisy_image, denoise_image], gr.update(label="可下载的结果为 *." + output_format + " 格式", format = output_format, value = [denoise_image]), None, gr.update(visible=True)
|
254 |
+
|
255 |
+
if model_select != model.current_model:
|
256 |
+
print('载入 ' + model_select)
|
257 |
+
if model_select == 'v0-Q':
|
258 |
+
model.load_state_dict(ckpt_Q, strict=False)
|
259 |
+
elif model_select == 'v0-F':
|
260 |
+
model.load_state_dict(ckpt_F, strict=False)
|
261 |
+
model.current_model = model_select
|
262 |
+
|
263 |
+
model.ae_dtype = convert_dtype(ae_dtype)
|
264 |
+
model.model.dtype = convert_dtype(diff_dtype)
|
265 |
+
|
266 |
+
# 分配
|
267 |
+
if allocation == 1:
|
268 |
+
return restore_in_1min(
|
269 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
270 |
+
)
|
271 |
+
if allocation == 2:
|
272 |
+
return restore_in_2min(
|
273 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
274 |
+
)
|
275 |
+
if allocation == 3:
|
276 |
+
return restore_in_3min(
|
277 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
278 |
+
)
|
279 |
+
if allocation == 4:
|
280 |
+
return restore_in_4min(
|
281 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
282 |
+
)
|
283 |
+
if allocation == 5:
|
284 |
+
return restore_in_5min(
|
285 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
286 |
+
)
|
287 |
+
if allocation == 7:
|
288 |
+
return restore_in_7min(
|
289 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
290 |
+
)
|
291 |
+
if allocation == 8:
|
292 |
+
return restore_in_8min(
|
293 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
294 |
+
)
|
295 |
+
if allocation == 9:
|
296 |
+
return restore_in_9min(
|
297 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
298 |
+
)
|
299 |
+
if allocation == 10:
|
300 |
+
return restore_in_10min(
|
301 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
302 |
+
)
|
303 |
+
else:
|
304 |
+
return restore_in_6min(
|
305 |
+
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
306 |
+
)
|
307 |
+
|
308 |
+
@spaces.GPU(duration=59)
|
309 |
+
def restore_in_1min(*args, **kwargs):
|
310 |
+
return restore_on_gpu(*args, **kwargs)
|
311 |
+
|
312 |
+
@spaces.GPU(duration=119)
|
313 |
+
def restore_in_2min(*args, **kwargs):
|
314 |
+
return restore_on_gpu(*args, **kwargs)
|
315 |
+
|
316 |
+
@spaces.GPU(duration=179)
|
317 |
+
def restore_in_3min(*args, **kwargs):
|
318 |
+
return restore_on_gpu(*args, **kwargs)
|
319 |
+
|
320 |
+
@spaces.GPU(duration=239)
|
321 |
+
def restore_in_4min(*args, **kwargs):
|
322 |
+
return restore_on_gpu(*args, **kwargs)
|
323 |
+
|
324 |
+
@spaces.GPU(duration=299)
|
325 |
+
def restore_in_5min(*args, **kwargs):
|
326 |
+
return restore_on_gpu(*args, **kwargs)
|
327 |
+
|
328 |
+
@spaces.GPU(duration=359)
|
329 |
+
def restore_in_6min(*args, **kwargs):
|
330 |
+
return restore_on_gpu(*args, **kwargs)
|
331 |
+
|
332 |
+
@spaces.GPU(duration=419)
|
333 |
+
def restore_in_7min(*args, **kwargs):
|
334 |
+
return restore_on_gpu(*args, **kwargs)
|
335 |
+
|
336 |
+
@spaces.GPU(duration=479)
|
337 |
+
def restore_in_8min(*args, **kwargs):
|
338 |
+
return restore_on_gpu(*args, **kwargs)
|
339 |
+
|
340 |
+
@spaces.GPU(duration=539)
|
341 |
+
def restore_in_9min(*args, **kwargs):
|
342 |
+
return restore_on_gpu(*args, **kwargs)
|
343 |
+
|
344 |
+
@spaces.GPU(duration=599)
|
345 |
+
def restore_in_10min(*args, **kwargs):
|
346 |
+
return restore_on_gpu(*args, **kwargs)
|
347 |
+
|
348 |
+
def restore_on_gpu(
|
349 |
+
noisy_image,
|
350 |
+
input_image,
|
351 |
+
prompt,
|
352 |
+
a_prompt,
|
353 |
+
n_prompt,
|
354 |
+
num_samples,
|
355 |
+
min_size,
|
356 |
+
downscale,
|
357 |
+
upscale,
|
358 |
+
edm_steps,
|
359 |
+
s_stage1,
|
360 |
+
s_stage2,
|
361 |
+
s_cfg,
|
362 |
+
randomize_seed,
|
363 |
+
seed,
|
364 |
+
s_churn,
|
365 |
+
s_noise,
|
366 |
+
color_fix_type,
|
367 |
+
diff_dtype,
|
368 |
+
ae_dtype,
|
369 |
+
gamma_correction,
|
370 |
+
linear_CFG,
|
371 |
+
linear_s_stage2,
|
372 |
+
spt_linear_CFG,
|
373 |
+
spt_linear_s_stage2,
|
374 |
+
model_select,
|
375 |
+
output_format,
|
376 |
+
allocation
|
377 |
+
):
|
378 |
+
start = time.time()
|
379 |
+
print('restore ==>>')
|
380 |
+
|
381 |
+
torch.cuda.set_device(BOOXEL_device)
|
382 |
+
|
383 |
+
with torch.no_grad():
|
384 |
+
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
385 |
+
LQ = np.array(input_image) / 255.0
|
386 |
+
LQ = np.power(LQ, gamma_correction)
|
387 |
+
LQ *= 255.0
|
388 |
+
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
389 |
+
LQ = LQ / 255 * 2 - 1
|
390 |
+
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(BOOXEL_device)[:, :3, :, :]
|
391 |
+
captions = ['']
|
392 |
+
|
393 |
+
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
394 |
+
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
395 |
+
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
396 |
+
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
397 |
+
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
|
398 |
+
|
399 |
+
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
400 |
+
0, 255).astype(np.uint8)
|
401 |
+
results = [x_samples[i] for i in range(num_samples)]
|
402 |
+
torch.cuda.empty_cache()
|
403 |
+
|
404 |
+
# 所有结果的大小相同
|
405 |
+
input_height, input_width, input_channel = np.array(input_image).shape
|
406 |
+
result_height, result_width, result_channel = np.array(results[0]).shape
|
407 |
+
|
408 |
+
print('<<== restore')
|
409 |
+
end = time.time()
|
410 |
+
secondes = int(end - start)
|
411 |
+
minutes = math.floor(secondes / 60)
|
412 |
+
secondes = secondes - (minutes * 60)
|
413 |
+
hours = math.floor(minutes / 60)
|
414 |
+
minutes = minutes - (hours * 60)
|
415 |
+
information = ("如果想获得不同的结果,请重新开始。" if randomize_seed else "") + \
|
416 |
+
"如果您没有得到想要的图片,请在 « 图片描述 » 中添加更多细节。" + \
|
417 |
+
"等待 " + str(allocation) + " 分钟以避免 GPU 配额处罚,或也可以使用另一台计算机。" + \
|
418 |
+
"该图片已在 " + \
|
419 |
+
((str(hours) + " 小时 ") if hours != 0 else "") + \
|
420 |
+
((str(minutes) + " 分钟 ") if hours != 0 or minutes != 0 else "") + \
|
421 |
+
str(secondes) + " 秒 内生成。" + \
|
422 |
+
"新图像的分辨率为 " + str(result_width) + \
|
423 |
+
" 像素宽, " + str(result_height) + \
|
424 |
+
" 像素高,最终总分辨率为 " + f'{result_width * result_height:,}' + " 像素。"
|
425 |
+
print(information)
|
426 |
+
try:
|
427 |
+
print("初始分辨率:" + f'{input_width * input_height:,}')
|
428 |
+
print("最终分辨率:" + f'{result_width * result_height:,}')
|
429 |
+
print("edm_steps: " + str(edm_steps))
|
430 |
+
print("num_samples: " + str(num_samples))
|
431 |
+
print("缩小规模:" + str(downscale))
|
432 |
+
print("预计分钟数:" + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
|
433 |
+
except Exception as e:
|
434 |
+
print('估算错误')
|
435 |
+
|
436 |
+
# 滑动块中只能显示一张图像
|
437 |
+
return [noisy_image] + [results[0]], gr.update(label="可下载的结果为 *." + output_format + " 格式", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
|
438 |
+
|
439 |
+
def load_and_reset(param_setting):
|
440 |
+
print('load_and_reset ==>>')
|
441 |
+
# if torch.cuda.device_count() == 0:
|
442 |
+
# gr.Warning('将此 Spaces 设置为 GPU 配置以使其正常工作。')
|
443 |
+
# return None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
444 |
+
edm_steps = default_setting.edm_steps
|
445 |
+
s_stage2 = 1.0
|
446 |
+
s_stage1 = -1.0
|
447 |
+
s_churn = 5
|
448 |
+
s_noise = 1.003
|
449 |
+
# 积极提示词
|
450 |
+
a_prompt = '电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。'
|
451 |
+
# 消极提示词
|
452 |
+
n_prompt = '绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑'
|
453 |
+
color_fix_type = 'Wavelet'
|
454 |
+
spt_linear_s_stage2 = 0.0
|
455 |
+
linear_s_stage2 = False
|
456 |
+
linear_CFG = True
|
457 |
+
if param_setting == "Quality":
|
458 |
+
s_cfg = default_setting.s_cfg_Quality
|
459 |
+
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
|
460 |
+
model_select = "v0-Q"
|
461 |
+
elif param_setting == "Fidelity":
|
462 |
+
s_cfg = default_setting.s_cfg_Fidelity
|
463 |
+
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
|
464 |
+
model_select = "v0-F"
|
465 |
+
else:
|
466 |
+
raise NotImplementedError
|
467 |
+
gr.Info('参数已重置。')
|
468 |
+
print('<<== load_and_reset')
|
469 |
+
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
470 |
+
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
471 |
+
|
472 |
+
def log_information(result_gallery):
|
473 |
+
print('log_information')
|
474 |
+
if result_gallery is not None:
|
475 |
+
for i, result in enumerate(result_gallery):
|
476 |
+
print(result[0])
|
477 |
+
|
478 |
+
def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
|
479 |
+
print('on_select_result')
|
480 |
+
if result_gallery is not None:
|
481 |
+
for i, result in enumerate(result_gallery):
|
482 |
+
print(result[0])
|
483 |
+
return [result_slider[0], result_gallery[evt.index][0]]
|
484 |
+
|
485 |
+
# Gradio 接口
|
486 |
+
with gr.Blocks() as interface:
|
487 |
+
gr.Markdown("""
|
488 |
+
# BOOXEL —— Boost Pixel!
|
489 |
+
|
490 |
+
提供你的提示词,借助先进的生成实验和模型放大的力量,获取非凡的逼真画面。
|
491 |
+
|
492 |
+
我们收集了一个包含 600 万张高分辨率、高质量图像的真实世界采集的数据集用于模型训练,每张图像都关联了清晰且详尽的描述性文本注释。
|
493 |
+
|
494 |
+
我们提供了使用文本提示操纵恢复图像的能力,此外,还引入了消极质量提示和恢复指导的采样方法,以进一步提高生成图像的质量和保真度。
|
495 |
+
""")
|
496 |
+
|
497 |
+
input_image = gr.Image(label="输入图像(*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
|
498 |
+
rotation = gr.Radio([["不旋转", 0], ["⤵ 旋转 +90°", 90], ["↩ 旋转 180°", 180], ["⤴ 旋转 -90°", -90]], label="方向校正", info="在还原图像之前,将应用以下旋转功能;人工智能需要良好的定位才能理解内容", value=0, interactive=True, visible=False)
|
499 |
+
with gr.Group():
|
500 |
+
prompt = gr.Textbox(label="图像描述", info="帮助人工智能理解图像所代表的内容;尽可能多地描述,尤其是我们在原始图像上看不到的细节;可以用任何语言书写", value="", placeholder="长春,上午,秋天,英短蓝白猫,走在,花丛小径上,真实图像", lines=3)
|
501 |
+
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="像素放大倍率", info="1 到 10 倍放大倍率", value=2, interactive=True)
|
502 |
+
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min(不建议)", 8], ["9 min(不建议)", 9], ["10 min(不建议)", 10]], label="GPU 分配时间", info="设置为较低值可中止运行;设置为较高值后,下次运行会受到配额处罚", value=5, interactive=True)
|
503 |
+
|
504 |
+
with gr.Accordion("预降噪(可选)", open=False):
|
505 |
+
gamma_correction = gr.Slider(label="伽玛校正", info="较低的值图像将会更亮,反之亦然", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
506 |
+
denoise_button = gr.Button(value="预降噪")
|
507 |
+
denoise_image = gr.Image(label="降噪图像", show_label=True, type="filepath", sources=[], interactive = False, height=600, elem_id="image-s1")
|
508 |
+
denoise_information = gr.HTML(value="如果存在,去噪图像将被用于修复,而不是输入图像。", visible=False)
|
509 |
+
|
510 |
+
with gr.Accordion("高级选项", open=False):
|
511 |
+
output_format = gr.Radio([["与输入一致", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="生成的图像格式", info="文件扩展名", value="input", interactive=True)
|
512 |
+
a_prompt = gr.Textbox(label="补充图片说明",
|
513 |
+
info="完整的主图像描述",
|
514 |
+
value='电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。',
|
515 |
+
lines=3)
|
516 |
+
n_prompt = gr.Textbox(label="负面图像描述",
|
517 |
+
info="通过列出图像不代表的内容来消除歧义",
|
518 |
+
value='绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑',
|
519 |
+
lines=3)
|
520 |
+
edm_steps = gr.Slider(label="步骤数", info="较低的值生成将会更快;较高的值将会获得更多的细节", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
521 |
+
num_samples = gr.Slider(label="生成数", info="生成的结果图像的数量", minimum=1, maximum=4 if not args.use_image_slider else 1
|
522 |
+
, value=1, step=1)
|
523 |
+
min_size = gr.Slider(label="最小尺寸", info="结果的最小高度和最小宽度", minimum=32, maximum=4096, value=1024, step=32)
|
524 |
+
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="缩减前因数", info="减少图像模糊,缩短处理时间", value=1, interactive=True)
|
525 |
+
with gr.Row():
|
526 |
+
with gr.Column():
|
527 |
+
model_select = gr.Radio([["质量 (v0-Q)", "v0-Q"], ["保真度 (v0-F)", "v0-F"]], label="模型选择", info="预训练模型", value="v0-Q",
|
528 |
+
interactive=True)
|
529 |
+
with gr.Column():
|
530 |
+
color_fix_type = gr.Radio([["None", "None"], ["AdaIn (改进风格)", "AdaIn"], ["Wavelet (针对 JPEG 伪图象)", "Wavelet"]], label="色彩修复类型", info="AdaIn 改进画面风格;Wavelet 用于 JPEG 伪图像", value="Wavelet",
|
531 |
+
interactive=True)
|
532 |
+
s_cfg = gr.Slider(label="文本指导等级", info="较低的值将更加跟随源图像;较高的值将更加跟随提示", minimum=1.0, maximum=15.0,
|
533 |
+
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
534 |
+
s_stage2 = gr.Slider(label="修复指导强度", minimum=0., maximum=1., value=1., step=0.05)
|
535 |
+
s_stage1 = gr.Slider(label="预降噪指导强度", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
536 |
+
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
537 |
+
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
538 |
+
with gr.Row():
|
539 |
+
with gr.Column():
|
540 |
+
linear_CFG = gr.Checkbox(label="线性 CFG", value=True)
|
541 |
+
spt_linear_CFG = gr.Slider(label="CFG 起始", minimum=1.0,
|
542 |
+
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
543 |
+
with gr.Column():
|
544 |
+
linear_s_stage2 = gr.Checkbox(label="线性修复指导", value=False)
|
545 |
+
spt_linear_s_stage2 = gr.Slider(label="指导起始", minimum=0.,
|
546 |
+
maximum=1., value=0., step=0.05)
|
547 |
+
with gr.Column():
|
548 |
+
diff_dtype = gr.Radio([["fp32 (精确)", "fp32"], ["fp16 (中等)", "fp16"], ["bf16 (快速)", "bf16"]], label="扩散数据类型", value="fp32",
|
549 |
+
interactive=True)
|
550 |
+
with gr.Column():
|
551 |
+
ae_dtype = gr.Radio([["fp32 (精确)", "fp32"], ["bf16 (快速)", "bf16"]], label="自动编码器数据类型", value="fp32",
|
552 |
+
interactive=True)
|
553 |
+
randomize_seed = gr.Checkbox(label = "\U0001F3B2 随机种子", value=True, info="如果选中,结果将总是不同")
|
554 |
+
seed = gr.Slider(label="种子", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
|
555 |
+
with gr.Group():
|
556 |
+
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="预配", value="Quality")
|
557 |
+
restart_button = gr.Button(value="应用预配")
|
558 |
+
|
559 |
+
with gr.Column():
|
560 |
+
diffusion_button = gr.Button(value="开始处理", variant="primary", elem_id="process_button")
|
561 |
+
reset_btn = gr.Button(value="重新初始化页面", variant="stop", elem_id="reset_button", visible=False)
|
562 |
+
|
563 |
+
restore_information = gr.HTML(value="重启进程,获得另一个结果。", visible=False)
|
564 |
+
result_slider = ImageSlider(label='对比结果', show_label=True, interactive=False, elem_id="slider1", show_download_button=False)
|
565 |
+
result_gallery = gr.Gallery(label='可下载的结果', show_label=True, interactive=False, elem_id="gallery1")
|
566 |
+
|
567 |
+
gr.Examples(
|
568 |
+
examples = [
|
569 |
+
[
|
570 |
+
"./Examples/Example1.png",
|
571 |
+
0,
|
572 |
+
None,
|
573 |
+
"一群人,快乐地在街上行走,逼真,8K,极其精细",
|
574 |
+
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
575 |
+
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
576 |
+
2,
|
577 |
+
1024,
|
578 |
+
1,
|
579 |
+
8,
|
580 |
+
200,
|
581 |
+
-1,
|
582 |
+
1,
|
583 |
+
7.5,
|
584 |
+
False,
|
585 |
+
42,
|
586 |
+
5,
|
587 |
+
1.003,
|
588 |
+
"AdaIn",
|
589 |
+
"fp16",
|
590 |
+
"bf16",
|
591 |
+
1.0,
|
592 |
+
True,
|
593 |
+
4,
|
594 |
+
False,
|
595 |
+
0.,
|
596 |
+
"v0-Q",
|
597 |
+
"input",
|
598 |
+
5
|
599 |
+
],
|
600 |
+
[
|
601 |
+
"./Examples/Example2.jpeg",
|
602 |
+
0,
|
603 |
+
None,
|
604 |
+
"一只虎斑猫的头部,在一间房子里,逼真,8K,极其细腻。",
|
605 |
+
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
606 |
+
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG ��格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
607 |
+
1,
|
608 |
+
1024,
|
609 |
+
1,
|
610 |
+
1,
|
611 |
+
200,
|
612 |
+
-1,
|
613 |
+
1,
|
614 |
+
7.5,
|
615 |
+
False,
|
616 |
+
42,
|
617 |
+
5,
|
618 |
+
1.003,
|
619 |
+
"Wavelet",
|
620 |
+
"fp16",
|
621 |
+
"bf16",
|
622 |
+
1.0,
|
623 |
+
True,
|
624 |
+
4,
|
625 |
+
False,
|
626 |
+
0.,
|
627 |
+
"v0-Q",
|
628 |
+
"input",
|
629 |
+
4
|
630 |
+
],
|
631 |
+
[
|
632 |
+
"./Examples/Example3.webp",
|
633 |
+
0,
|
634 |
+
None,
|
635 |
+
"一个红色的苹果",
|
636 |
+
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
637 |
+
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
638 |
+
1,
|
639 |
+
1024,
|
640 |
+
1,
|
641 |
+
1,
|
642 |
+
200,
|
643 |
+
-1,
|
644 |
+
1,
|
645 |
+
7.5,
|
646 |
+
False,
|
647 |
+
42,
|
648 |
+
5,
|
649 |
+
1.003,
|
650 |
+
"Wavelet",
|
651 |
+
"fp16",
|
652 |
+
"bf16",
|
653 |
+
1.0,
|
654 |
+
True,
|
655 |
+
4,
|
656 |
+
False,
|
657 |
+
0.,
|
658 |
+
"v0-Q",
|
659 |
+
"input",
|
660 |
+
4
|
661 |
+
],
|
662 |
+
[
|
663 |
+
"./Examples/Example3.webp",
|
664 |
+
0,
|
665 |
+
None,
|
666 |
+
"一块红色大理石",
|
667 |
+
"电影级,高对比度,高度精细,使用哈苏相机拍摄,超精细照片,逼真的最大细节,32K,调色,超高清,极致的细节,皮肤毛孔细节,超清晰度,完美无变形。",
|
668 |
+
"绘画,油画,插图,绘图,艺术,素描,动漫,卡通,CG 风格,3D 渲染,虚幻引擎,模糊,混色,不清晰,怪异纹理,丑陋,肮脏,凌乱,质量最差,质量低,框架,水印,签名,JPEG 伪影,变形,低分辨率,过度平滑",
|
669 |
+
1,
|
670 |
+
1024,
|
671 |
+
1,
|
672 |
+
1,
|
673 |
+
200,
|
674 |
+
-1,
|
675 |
+
1,
|
676 |
+
7.5,
|
677 |
+
False,
|
678 |
+
42,
|
679 |
+
5,
|
680 |
+
1.003,
|
681 |
+
"Wavelet",
|
682 |
+
"fp16",
|
683 |
+
"bf16",
|
684 |
+
1.0,
|
685 |
+
True,
|
686 |
+
4,
|
687 |
+
False,
|
688 |
+
0.,
|
689 |
+
"v0-Q",
|
690 |
+
"input",
|
691 |
+
4
|
692 |
+
],
|
693 |
+
],
|
694 |
+
run_on_click = True,
|
695 |
+
fn = stage2_process,
|
696 |
+
inputs = [
|
697 |
+
input_image,
|
698 |
+
rotation,
|
699 |
+
denoise_image,
|
700 |
+
prompt,
|
701 |
+
a_prompt,
|
702 |
+
n_prompt,
|
703 |
+
num_samples,
|
704 |
+
min_size,
|
705 |
+
downscale,
|
706 |
+
upscale,
|
707 |
+
edm_steps,
|
708 |
+
s_stage1,
|
709 |
+
s_stage2,
|
710 |
+
s_cfg,
|
711 |
+
randomize_seed,
|
712 |
+
seed,
|
713 |
+
s_churn,
|
714 |
+
s_noise,
|
715 |
+
color_fix_type,
|
716 |
+
diff_dtype,
|
717 |
+
ae_dtype,
|
718 |
+
gamma_correction,
|
719 |
+
linear_CFG,
|
720 |
+
linear_s_stage2,
|
721 |
+
spt_linear_CFG,
|
722 |
+
spt_linear_s_stage2,
|
723 |
+
model_select,
|
724 |
+
output_format,
|
725 |
+
allocation
|
726 |
+
],
|
727 |
+
outputs = [
|
728 |
+
result_slider,
|
729 |
+
result_gallery,
|
730 |
+
restore_information,
|
731 |
+
reset_btn
|
732 |
+
],
|
733 |
+
cache_examples = False,
|
734 |
+
)
|
735 |
+
|
736 |
+
input_image.upload(fn = check_upload, inputs = [
|
737 |
+
input_image
|
738 |
+
], outputs = [
|
739 |
+
rotation
|
740 |
+
], queue = False, show_progress = False)
|
741 |
+
|
742 |
+
denoise_button.click(fn = check, inputs = [
|
743 |
+
input_image
|
744 |
+
], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
|
745 |
+
input_image,
|
746 |
+
gamma_correction,
|
747 |
+
diff_dtype,
|
748 |
+
ae_dtype
|
749 |
+
], outputs=[
|
750 |
+
denoise_image,
|
751 |
+
denoise_information
|
752 |
+
])
|
753 |
+
|
754 |
+
diffusion_button.click(fn = update_seed, inputs = [
|
755 |
+
randomize_seed,
|
756 |
+
seed
|
757 |
+
], outputs = [
|
758 |
+
seed
|
759 |
+
], queue = False, show_progress = False).then(fn = check, inputs = [
|
760 |
+
input_image
|
761 |
+
], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
|
762 |
+
input_image,
|
763 |
+
rotation,
|
764 |
+
denoise_image,
|
765 |
+
prompt,
|
766 |
+
a_prompt,
|
767 |
+
n_prompt,
|
768 |
+
num_samples,
|
769 |
+
min_size,
|
770 |
+
downscale,
|
771 |
+
upscale,
|
772 |
+
edm_steps,
|
773 |
+
s_stage1,
|
774 |
+
s_stage2,
|
775 |
+
s_cfg,
|
776 |
+
randomize_seed,
|
777 |
+
seed,
|
778 |
+
s_churn,
|
779 |
+
s_noise,
|
780 |
+
color_fix_type,
|
781 |
+
diff_dtype,
|
782 |
+
ae_dtype,
|
783 |
+
gamma_correction,
|
784 |
+
linear_CFG,
|
785 |
+
linear_s_stage2,
|
786 |
+
spt_linear_CFG,
|
787 |
+
spt_linear_s_stage2,
|
788 |
+
model_select,
|
789 |
+
output_format,
|
790 |
+
allocation
|
791 |
+
], outputs = [
|
792 |
+
result_slider,
|
793 |
+
result_gallery,
|
794 |
+
restore_information,
|
795 |
+
reset_btn
|
796 |
+
]).success(fn = log_information, inputs = [
|
797 |
+
result_gallery
|
798 |
+
], outputs = [], queue = False, show_progress = False)
|
799 |
+
|
800 |
+
result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
|
801 |
+
result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
|
802 |
+
|
803 |
+
restart_button.click(fn = load_and_reset, inputs = [
|
804 |
+
param_setting
|
805 |
+
], outputs = [
|
806 |
+
edm_steps,
|
807 |
+
s_cfg,
|
808 |
+
s_stage2,
|
809 |
+
s_stage1,
|
810 |
+
s_churn,
|
811 |
+
s_noise,
|
812 |
+
a_prompt,
|
813 |
+
n_prompt,
|
814 |
+
color_fix_type,
|
815 |
+
linear_CFG,
|
816 |
+
linear_s_stage2,
|
817 |
+
spt_linear_CFG,
|
818 |
+
spt_linear_s_stage2,
|
819 |
+
model_select
|
820 |
+
])
|
821 |
+
|
822 |
+
reset_btn.click(fn = reset, inputs = [], outputs = [
|
823 |
+
input_image,
|
824 |
+
rotation,
|
825 |
+
denoise_image,
|
826 |
+
prompt,
|
827 |
+
a_prompt,
|
828 |
+
n_prompt,
|
829 |
+
num_samples,
|
830 |
+
min_size,
|
831 |
+
downscale,
|
832 |
+
upscale,
|
833 |
+
edm_steps,
|
834 |
+
s_stage1,
|
835 |
+
s_stage2,
|
836 |
+
s_cfg,
|
837 |
+
randomize_seed,
|
838 |
+
seed,
|
839 |
+
s_churn,
|
840 |
+
s_noise,
|
841 |
+
color_fix_type,
|
842 |
+
diff_dtype,
|
843 |
+
ae_dtype,
|
844 |
+
gamma_correction,
|
845 |
+
linear_CFG,
|
846 |
+
linear_s_stage2,
|
847 |
+
spt_linear_CFG,
|
848 |
+
spt_linear_s_stage2,
|
849 |
+
model_select,
|
850 |
+
output_format,
|
851 |
+
allocation
|
852 |
+
], queue = False, show_progress = False)
|
853 |
+
|
854 |
interface.queue(10).launch()
|