a96123155 commited on
Commit
c2ce74d
·
1 Parent(s): dedea73
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. app.py +550 -0
  3. git.sh +3 -0
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
app.py ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from io import StringIO
3
+ from Bio import SeqIO
4
+
5
+ st.title("IRES-LM prediction and mutation")
6
+
7
+ # Input sequence
8
+ st.subheader("Input sequence")
9
+
10
+ seq = st.text_area("FASTA format only", value=">vir_CVB3_ires_00505.1\nTTAAAACAGCCTGTGGGTTGATCCCACCCACAGGCCCATTGGGCGCTAGCACTCTGGTATCACGGTACCTTTGTGCGCCTGTTTTATACCCCCTCCCCCAACTGTAACTTAGAAGTAACACACACCGATCAACAGTCAGCGTGGCACACCAGCCACGTTTTGATCAAGCACTTCTGTTACCCCGGACTGAGTATCAATAGACTGCTCACGCGGTTGAAGGAGAAAGCGTTCGTTATCCGGCCAACTACTTCGAAAAACCTAGTAACACCGTGGAAGTTGCAGAGTGTTTCGCTCAGCACTACCCCAGTGTAGATCAGGTCGATGAGTCACCGCATTCCCCACGGGCGACCGTGGCGGTGGCTGCGTTGGCGGCCTGCCCATGGGGAAACCCATGGGACGCTCTAATACAGACATGGTGCGAAGAGTCTATTGAGCTAGTTGGTAGTCCTCCGGCCCCTGAATGCGGCTAATCCTAACTGCGGAGCACACACCCTCAAGCCAGAGGGCAGTGTGTCGTAACGGGCAACTCTGCAGCGGAACCGACTACTTTGGGTGTCCGTGTTTCATTTTATTCCTATACTGGCTGCTTATGGTGACAATTGAGAGATCGTTACCATATAGCTATTGGATTGGCCATCCGGTGACTAATAGAGCTATTATATATCCCTTTGTTGGGTTTATACCACTTAGCTTGAAAGAGGTTAAAACATTACAATTCATTGTTAAGTTGAATACAGCAAA")
11
+ st.subheader("Upload sequence file")
12
+ uploaded = st.file_uploader("Sequence file in FASTA format")
13
+
14
+ # augments
15
+ global output_filename, start_nt_position, end_nt_position, mut_by_prob, transform_type, mlm_tok_num, n_mut, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger
16
+ output_filename = st.text_input("output a .csv file", value='IRES_LM_prediction_mutation')
17
+ start_nt_position = st.number_input("The start position of the mutation of this sequence, the first position is defined as 0", value=0)
18
+ end_nt_position = st.number_input("The last position of the mutation of this sequence, the last position is defined as length(sequence)-1 or -1", value=-1)
19
+ mut_by_prob = st.checkbox("Mutated by predicted Probability or Transformed Probability of the sequence", value=True)
20
+ transform_type = st.selectbox("Type of probability transformation",
21
+ ['', 'sigmoid', 'logit', 'power_law', 'tanh'],
22
+ index=2)
23
+ mlm_tok_num = st.number_input("Number of masked tokens for each sequence per epoch", value=1)
24
+ n_mut = st.number_input("Maximum number of mutations for each sequence", value=3)
25
+ n_designs_ep = st.number_input("Number of mutations per epoch", value=10)
26
+ n_sampling_designs_ep = st.number_input("Number of sampling mutations from n_designs_ep per epoch", value=5)
27
+ n_mlm_recovery_sampling = st.number_input("Number of MLM recovery samplings (with AGCT recovery)", value=1)
28
+ mutate2stronger = st.checkbox("Mutate to stronger IRES variant, otherwise mutate to weaker IRES", value=True)
29
+
30
+ if not mut_by_prob and transform_type != '':
31
+ st.write("--transform_type must be '' when --mut_by_prob is False")
32
+ transform_type = ''
33
+
34
+
35
+ # Import necessary libraries
36
+ # import matplotlib
37
+ # import matplotlib.pyplot as plt
38
+ import numpy as np
39
+ import os
40
+ import pandas as pd
41
+ # import pathlib
42
+ import random
43
+ # import scanpy as sc
44
+ # import seaborn as sns
45
+ import torch
46
+ import torch.nn as nn
47
+ import torch.nn.functional as F
48
+ # from argparse import Namespace
49
+ from collections import Counter, OrderedDict
50
+ from copy import deepcopy
51
+ from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer
52
+ from esm.data import *
53
+ from esm.model.esm2 import ESM2
54
+ # from sklearn import preprocessing
55
+ # from sklearn.metrics import (confusion_matrix, roc_auc_score, auc,
56
+ # precision_recall_fscore_support,
57
+ # precision_recall_curve, classification_report,
58
+ # roc_auc_score, average_precision_score,
59
+ # precision_score, recall_score, f1_score,
60
+ # accuracy_score)
61
+ # from sklearn.model_selection import StratifiedKFold
62
+ # from sklearn.utils import class_weight
63
+ # from scipy.stats import spearmanr, pearsonr
64
+ from torch import nn
65
+ from torch.nn import Linear
66
+ from torch.nn.utils.rnn import pad_sequence
67
+ from torch.utils.data import Dataset, DataLoader
68
+ from tqdm import tqdm, trange
69
+
70
+ # Set global variables
71
+ # matplotlib.rcParams.update({'font.size': 7})
72
+ seed = 19961231
73
+ random.seed(seed)
74
+ np.random.seed(seed)
75
+ torch.manual_seed(seed)
76
+ # torch.cuda.manual_seed(seed)
77
+ # torch.backends.cudnn.deterministic = True
78
+ # torch.backends.cudnn.benchmark = False
79
+
80
+
81
+ global idx_to_tok, prefix, epochs, layers, heads, fc_node, dropout_prob, embed_dim, batch_toks, device, repr_layers, evaluation, include, truncate, return_contacts, return_representation, mask_toks_id, finetune
82
+
83
+ epochs = 5
84
+ layers = 6
85
+ heads = 16
86
+ embed_dim = 128
87
+ batch_toks = 4096
88
+ fc_node = 64
89
+ dropout_prob = 0.5
90
+ folds = 10
91
+ repr_layers = [-1]
92
+ include = ["mean"]
93
+ truncate = True
94
+ finetune = False
95
+ return_contacts = False
96
+ return_representation = False
97
+
98
+ device = "cpu"
99
+
100
+ global tok_to_idx, idx_to_tok, mask_toks_id
101
+ alphabet = Alphabet(mask_prob = 0.15, standard_toks = 'AGCT')
102
+ assert alphabet.tok_to_idx == {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
103
+
104
+ # tok_to_idx = {'<pad>': 0, '<eos>': 1, '<unk>': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '<cls>': 7, '<mask>': 8, '<sep>': 9}
105
+ tok_to_idx = {'-': 0, '&': 1, '?': 2, 'A': 3, 'G': 4, 'C': 5, 'T': 6, '!': 7, '*': 8, '|': 9}
106
+ idx_to_tok = {idx: tok for tok, idx in tok_to_idx.items()}
107
+ # st.write(tok_to_idx)
108
+ mask_toks_id = 8
109
+
110
+ global w1, w2, w3
111
+ w1, w2, w3 = 1, 1, 100
112
+
113
+ class CNN_linear(nn.Module):
114
+ def __init__(self):
115
+ super(CNN_linear, self).__init__()
116
+
117
+ self.esm2 = ESM2(num_layers = layers,
118
+ embed_dim = embed_dim,
119
+ attention_heads = heads,
120
+ alphabet = alphabet)
121
+
122
+ self.dropout = nn.Dropout(dropout_prob)
123
+ self.relu = nn.ReLU()
124
+ self.flatten = nn.Flatten()
125
+ self.fc = nn.Linear(in_features = embed_dim, out_features = fc_node)
126
+ self.output = nn.Linear(in_features = fc_node, out_features = 2)
127
+
128
+ def predict(self, tokens):
129
+
130
+ x = self.esm2(tokens, [layers], need_head_weights=False, return_contacts=False, return_representation = True)
131
+ x_cls = x["representations"][layers][:, 0]
132
+
133
+ o = self.fc(x_cls)
134
+ o = self.relu(o)
135
+ o = self.dropout(o)
136
+ o = self.output(o)
137
+
138
+ y_prob = torch.softmax(o, dim = 1)
139
+ y_pred = torch.argmax(y_prob, dim = 1)
140
+
141
+ if transform_type:
142
+ y_prob_transformed = prob_transform(y_prob[:,1])
143
+ return y_prob[:,1], y_pred, x['logits'], y_prob_transformed
144
+ else:
145
+ return y_prob[:,1], y_pred, x['logits'], o[:,1]
146
+
147
+ def forward(self, x1, x2):
148
+ logit_1, repr_1 = self.predict(x1)
149
+ logit_2, repr_2 = self.predict(x2)
150
+ return (logit_1, logit_2), (repr_1, repr_2)
151
+
152
+ def prob_transform(prob, **kwargs): # Logits
153
+ """
154
+ Transforms probability values based on the specified method.
155
+
156
+ :param prob: torch.Tensor, the input probabilities to be transformed
157
+ :param transform_type: str, the type of transformation to be applied
158
+ :param kwargs: additional parameters for transformations
159
+ :return: torch.Tensor, transformed probabilities
160
+ """
161
+
162
+ if transform_type == 'sigmoid':
163
+ x0 = kwget('x0', 0.5)
164
+ k = kwget('k', 10.0)
165
+ prob_transformed = 1 / (1 + torch.exp(-k * (prob - x0)))
166
+
167
+ elif transform_type == 'logit':
168
+ # Adding a small value to avoid log(0) and log(1)
169
+ prob_transformed = torch.log(prob + 1e-6) - torch.log(1 - prob + 1e-6)
170
+
171
+ elif transform_type == 'power_law':
172
+ gamma = kwget('gamma', 2.0)
173
+ prob_transformed = torch.pow(prob, gamma)
174
+
175
+ elif transform_type == 'tanh':
176
+ k = kwget('k', 2.0)
177
+ prob_transformed = torch.tanh(k * prob)
178
+
179
+ return prob_transformed
180
+
181
+ def random_replace(sequence, continuous_replace=False):
182
+ if end_nt_position == -1: end_nt_position = len(sequence)
183
+ if start_nt_position < 0 or end_nt_position > len(sequence) or start_nt_position > end_nt_position:
184
+ # raise ValueError("Invalid start/end positions")
185
+ st.write("Invalid start/end positions")
186
+ start_nt_position, end_nt_position = 0, -1
187
+
188
+ # 将序列切片成三部分:替换区域前、替换区域、替换区域后
189
+ pre_segment = sequence[:start_nt_position]
190
+ target_segment = list(sequence[start_nt_position:end_nt_position + 1]) # +1因为Python的切片是右开区间
191
+ post_segment = sequence[end_nt_position + 1:]
192
+
193
+ if not continuous_replace:
194
+ # 随机替换目标片段的mlm_tok_num个位置
195
+ indices = random.sample(range(len(target_segment)), mlm_tok_num)
196
+ for idx in indices:
197
+ target_segment[idx] = '*'
198
+ else:
199
+ # 在目标片段连续替换mlm_tok_num个位置
200
+ max_start_idx = len(target_segment) - mlm_tok_num # 确保从i开始的n_mut个元素不会超出目标片段的长度
201
+ if max_start_idx < 1: # 如果目标片段长度小于mlm_tok_num,返回原始序列
202
+ return target_segment
203
+ start_idx = random.randint(0, max_start_idx)
204
+ for idx in range(start_idx, start_idx + mlm_tok_num):
205
+ target_segment[idx] = '*'
206
+
207
+ # 合并并返回最终的序列
208
+ return ''.join([pre_segment] + target_segment + [post_segment])
209
+
210
+
211
+ def mlm_seq(seq):
212
+ seq_token, masked_sequence_token = [7],[7]
213
+ seq_token += [tok_to_idx[token] for token in seq]
214
+
215
+ masked_seq = random_replace(seq, n_mut) # 随机替换n_mut个元素为'*'
216
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
217
+
218
+ return seq, masked_seq, torch.LongTensor(seq_token), torch.LongTensor(masked_seq_token)
219
+
220
+ def batch_mlm_seq(seq_list, continuous_replace = False):
221
+ batch_seq = []
222
+ batch_masked_seq = []
223
+ batch_seq_token_list = []
224
+ batch_masked_seq_token_list = []
225
+
226
+ for i, seq in enumerate(seq_list):
227
+ seq_token, masked_seq_token = [7], [7]
228
+ seq_token += [tok_to_idx[token] for token in seq]
229
+
230
+ masked_seq = random_replace(seq, continuous_replace) # 随机��换n_mut个元素为'*'
231
+ masked_seq_token += [tok_to_idx[token] for token in masked_seq]
232
+
233
+ batch_seq.append(seq)
234
+ batch_masked_seq.append(masked_seq)
235
+
236
+ batch_seq_token_list.append(seq_token)
237
+ batch_masked_seq_token_list.append(masked_seq_token)
238
+
239
+ return batch_seq, batch_masked_seq, torch.LongTensor(batch_seq_token_list), torch.LongTensor(batch_masked_seq_token_list)
240
+
241
+ def recovered_mlm_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
242
+ # Only remain the AGCT logits
243
+ esm_logits = esm_logits[:,:,3:7]
244
+ # Get the predicted tokens using argmax
245
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
246
+
247
+ batch_size, seq_len, vocab_size = esm_logits.size()
248
+ if exclude_low_prob: min_prob = 1 / vocab_size
249
+ # Initialize an empty list to store the recovered sequences
250
+ recovered_sequences, recovered_toks = [], []
251
+
252
+ for i in range(batch_size):
253
+ recovered_sequence_i, recovered_tok_i = [], []
254
+ for j in range(seq_len):
255
+ if masked_toks[i][j] == 8:
256
+ st.write(i,j)
257
+ ### Sample M recovery sequences using the logits
258
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
259
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
260
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
261
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
262
+
263
+ ### 有放回抽样
264
+ max_retries = 5
265
+ retries = 0
266
+ success = False
267
+
268
+ while retries < max_retries and not success:
269
+ try:
270
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
271
+ success = True # 设置成功标志
272
+ except ValueError as e:
273
+ retries += 1
274
+ st.write(f"Attempt {retries} failed with error: {e}")
275
+ if retries >= max_retries:
276
+ st.write("Max retries reached. Skipping this iteration.")
277
+
278
+ ### recovery to sequence
279
+ if retries < max_retries:
280
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
281
+ recovery_seq = deepcopy(list(masked_seqs[i]))
282
+ recovery_tok = deepcopy(masked_toks[i])
283
+
284
+ recovery_tok[j] = idx
285
+ recovery_seq[j-1] = idx_to_tok[idx]
286
+
287
+ recovered_tok_i.append(recovery_tok)
288
+ recovered_sequence_i.append(''.join(recovery_seq))
289
+
290
+ recovered_sequences.extend(recovered_sequence_i)
291
+ recovered_toks.extend(recovered_tok_i)
292
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
293
+
294
+ def recovered_mlm_multi_tokens(masked_seqs, masked_toks, esm_logits, exclude_low_prob = False):
295
+ # Only remain the AGCT logits
296
+ esm_logits = esm_logits[:,:,3:7]
297
+ # Get the predicted tokens using argmax
298
+ predicted_toks = (esm_logits.argmax(dim=-1)+3).tolist()
299
+
300
+ batch_size, seq_len, vocab_size = esm_logits.size()
301
+ if exclude_low_prob: min_prob = 1 / vocab_size
302
+ # Initialize an empty list to store the recovered sequences
303
+ recovered_sequences, recovered_toks = [], []
304
+
305
+ for i in range(batch_size):
306
+ recovered_sequence_i, recovered_tok_i = [], []
307
+ recovered_masked_num = 0
308
+ for j in range(seq_len):
309
+ if masked_toks[i][j] == 8:
310
+ ### Sample M recovery sequences using the logits
311
+ recovery_probs = torch.softmax(esm_logits[i, j], dim=-1)
312
+ recovery_probs[predicted_toks[i][j]-3] = 0 # Exclude the most probable token
313
+ if exclude_low_prob: recovery_probs[recovery_probs < min_prob] = 0 # Exclude tokens with low probs < min_prob
314
+ recovery_probs /= recovery_probs.sum() # Normalize the probabilities
315
+
316
+ ### 有放回抽样
317
+ max_retries = 5
318
+ retries = 0
319
+ success = False
320
+
321
+ while retries < max_retries and not success:
322
+ try:
323
+ recovery_indices = list(np.random.choice(vocab_size, size=n_mlm_recovery_sampling, p=recovery_probs.cpu().detach().numpy(), replace=False))
324
+ success = True # 设置成功标志
325
+ except ValueError as e:
326
+ retries += 1
327
+ st.write(f"Attempt {retries} failed with error: {e}")
328
+ if retries >= max_retries:
329
+ st.write("Max retries reached. Skipping this iteration.")
330
+
331
+ ### recovery to sequence
332
+
333
+ if recovered_masked_num == 0:
334
+ if retries < max_retries:
335
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
336
+ recovery_seq = deepcopy(list(masked_seqs[i]))
337
+ recovery_tok = deepcopy(masked_toks[i])
338
+
339
+ recovery_tok[j] = idx
340
+ recovery_seq[j-1] = idx_to_tok[idx]
341
+
342
+ recovered_tok_i.append(recovery_tok)
343
+ recovered_sequence_i.append(''.join(recovery_seq))
344
+
345
+ elif recovered_masked_num > 0:
346
+ if retries < max_retries:
347
+ for idx in [predicted_toks[i][j]] + [3+i for i in recovery_indices]:
348
+ for recovery_seq, recovery_tok in zip(list(recovered_sequence_i), list(recovered_tok_i)): # 要在循环开始之前获取列表的副本来进行迭代。这样,在循环中即使我们修改了原始的列表,也不会影响迭代的行为。
349
+
350
+ recovery_seq_temp = list(recovery_seq)
351
+ recovery_tok[j] = idx
352
+ recovery_seq_temp[j-1] = idx_to_tok[idx]
353
+
354
+ recovered_tok_i.append(recovery_tok)
355
+ recovered_sequence_i.append(''.join(recovery_seq_temp))
356
+
357
+ recovered_masked_num += 1
358
+ recovered_indices = [i for i, s in enumerate(recovered_sequence_i) if '*' not in s]
359
+ recovered_tok_i = [recovered_tok_i[i] for i in recovered_indices]
360
+ recovered_sequence_i = [recovered_sequence_i[i] for i in recovered_indices]
361
+
362
+ recovered_sequences.extend(recovered_sequence_i)
363
+ recovered_toks.extend(recovered_tok_i)
364
+
365
+ recovered_sequences, recovered_toks = remove_duplicates_double(recovered_sequences, recovered_toks)
366
+
367
+ return recovered_sequences, torch.LongTensor(torch.stack(recovered_toks))
368
+
369
+ def mismatched_positions(s1, s2):
370
+ # 这个函数假定两个字符串的长度相同。
371
+ """Return the number of positions where two strings differ."""
372
+
373
+ # The number of mismatches will be the sum of positions where characters are not the same
374
+ return sum(1 for c1, c2 in zip(s1, s2) if c1 != c2)
375
+
376
+ def remove_duplicates_triple(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
377
+ seen = {}
378
+ unique_seqs = []
379
+ unique_probs = []
380
+ unique_logits = []
381
+
382
+ for seq, prob, logit in zip(filtered_mut_seqs, filtered_mut_probs, filtered_mut_logits):
383
+ if seq not in seen:
384
+ unique_seqs.append(seq)
385
+ unique_probs.append(prob)
386
+ unique_logits.append(logit)
387
+ seen[seq] = True
388
+
389
+ return unique_seqs, unique_probs, unique_logits
390
+
391
+ def remove_duplicates_double(filtered_mut_seqs, filtered_mut_probs):
392
+ seen = {}
393
+ unique_seqs = []
394
+ unique_probs = []
395
+
396
+ for seq, prob in zip(filtered_mut_seqs, filtered_mut_probs):
397
+ if seq not in seen:
398
+ unique_seqs.append(seq)
399
+ unique_probs.append(prob)
400
+ seen[seq] = True
401
+
402
+ return unique_seqs, unique_probs
403
+
404
+ def mutated_seq(wt_seq, wt_label):
405
+ wt_seq = '!'+ wt_seq
406
+ wt_tok = torch.LongTensor([[tok_to_idx[token] for token in wt_seq]]).to(device)
407
+ wt_prob, wt_pred, _, wt_logit = model.predict(wt_tok)
408
+
409
+ st.write(f'Wild Type: Length = ', len(wt_seq), '\n', wt_seq)
410
+ st.write(f'Wild Type: Label = {wt_label}, Y_pred = {wt_pred.item()}, Y_prob = {wt_prob.item():.2%}')
411
+
412
+ # st.write(n_mut, mlm_tok_num, n_designs_ep, n_sampling_designs_ep, n_mlm_recovery_sampling, mutate2stronger)
413
+ # pbar = tqdm(total=n_mut)
414
+ mutated_seqs = []
415
+ i = 1
416
+ pbar = st.progress(i, text="mutated number of sequence")
417
+ while i <= n_mut:
418
+ if i == 1: seeds_ep = [wt_seq[1:]]
419
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = [], [], []
420
+ for seed in seeds_ep:
421
+ seed_seq, masked_seed_seq, seed_seq_token, masked_seed_seq_token = batch_mlm_seq([seed] * n_designs_ep, continuous_replace = True) ### mask seed with 1 site to "*"
422
+
423
+ seed_prob, seed_pred, _, seed_logit = model.predict(seed_seq_token[0].unsqueeze_(0).to(device))
424
+ _, _, seed_esm_logit, _ = model.predict(masked_seed_seq_token.to(device))
425
+ mut_seqs, mut_toks = recovered_mlm_multi_tokens(masked_seed_seq, masked_seed_seq_token, seed_esm_logit)
426
+ mut_probs, mut_preds, mut_esm_logits, mut_logits = model.predict(mut_toks.to(device))
427
+
428
+ ### Filter mut_seqs that mut_prob < seed_prob and mut_prob < wild_prob
429
+ filtered_mut_seqs = []
430
+ filtered_mut_probs = []
431
+ filtered_mut_logits = []
432
+ if mut_by_prob:
433
+ for z in range(len(mut_seqs)):
434
+ if mutate2stronger:
435
+ if mut_probs[z] >= seed_prob and mut_probs[z] >= wt_prob:
436
+ filtered_mut_seqs.append(mut_seqs[z])
437
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
438
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
439
+ else:
440
+ if mut_probs[z] < seed_prob and mut_probs[z] < wt_prob:
441
+ filtered_mut_seqs.append(mut_seqs[z])
442
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
443
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
444
+ else:
445
+ for z in range(len(mut_seqs)):
446
+ if mutate2stronger:
447
+ if mut_logits[z] >= seed_logit and mut_logits[z] >= wt_logit:
448
+ filtered_mut_seqs.append(mut_seqs[z])
449
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
450
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
451
+ else:
452
+ if mut_logits[z] < seed_logit and mut_logits[z] < wt_logit:
453
+ filtered_mut_seqs.append(mut_seqs[z])
454
+ filtered_mut_probs.append(mut_probs[z].cpu().detach().numpy())
455
+ filtered_mut_logits.append(mut_logits[z].cpu().detach().numpy())
456
+
457
+
458
+
459
+ ### Save
460
+ seeds_next_ep.extend(filtered_mut_seqs)
461
+ seeds_probs_next_ep.extend(filtered_mut_probs)
462
+ seeds_logits_next_ep.extend(filtered_mut_logits)
463
+ seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep = remove_duplicates_triple(seeds_next_ep, seeds_probs_next_ep, seeds_logits_next_ep)
464
+
465
+ ### Sampling based on prob
466
+ if len(seeds_next_ep) > n_sampling_designs_ep:
467
+ seeds_probs_next_ep_norm = seeds_probs_next_ep / sum(seeds_probs_next_ep) # Normalize the probabilities
468
+ seeds_index_next_ep = np.random.choice(len(seeds_next_ep), n_sampling_designs_ep, p = seeds_probs_next_ep_norm, replace = False)
469
+
470
+ seeds_next_ep = np.array(seeds_next_ep)[seeds_index_next_ep]
471
+ seeds_probs_next_ep = np.array(seeds_probs_next_ep)[seeds_index_next_ep]
472
+ seeds_logits_next_ep = np.array(seeds_logits_next_ep)[seeds_index_next_ep]
473
+ seeds_mutated_num_next_ep = [mismatched_positions(wt_seq[1:], s) for s in seeds_next_ep]
474
+
475
+ mutated_seqs.extend(list(zip(seeds_next_ep, seeds_logits_next_ep, seeds_probs_next_ep, seeds_mutated_num_next_ep)))
476
+
477
+ seeds_ep = seeds_next_ep
478
+ i += 1
479
+ # pbar.update(1)
480
+ pbar.progress(i/n_mut, text="Mutating")
481
+ # pbar.close()
482
+ st.success('Done', icon="✅")
483
+ mutated_seqs.extend([(wt_seq[1:], wt_logit.item(), wt_prob.item(), 0)])
484
+ mutated_seqs = sorted(mutated_seqs, key=lambda x: x[2], reverse=True)
485
+ mutated_seqs = pd.DataFrame(mutated_seqs, columns = ['mutated_seq', 'predicted_logit', 'predicted_probability', 'mutated_num']).drop_duplicates('mutated_seq')
486
+ return mutated_seqs
487
+
488
+ def read_raw(raw_input):
489
+ ids = []
490
+ sequences = []
491
+
492
+ file = StringIO(raw_input)
493
+ for record in SeqIO.parse(file, "fasta"):
494
+
495
+ # 检查序列是否只包含A, G, C, T
496
+ sequence = str(record.seq.back_transcribe()).upper()
497
+ if not set(sequence).issubset(set("AGCT")):
498
+ st.write(f"Record '{record.description}' was skipped for containing invalid characters. Only A, G, C, T(U) are allowed.")
499
+ continue
500
+
501
+ # 将符合条件的序列添加到列表中
502
+ ids.append(record.id)
503
+ sequences.append(sequence)
504
+
505
+ return ids, sequences
506
+
507
+ def predict_raw(raw_input):
508
+ state_dict = torch.load('model.pt', map_location=torch.device(device))
509
+ new_state_dict = OrderedDict()
510
+
511
+ for k, v in state_dict.items():
512
+ name = k.replace('module.','')
513
+ new_state_dict[name] = v
514
+
515
+ model = CNN_linear().to(device)
516
+ model.load_state_dict(new_state_dict, strict = False)
517
+ model.eval()
518
+ st.write(model)
519
+ # st.write('====Parse Input====')
520
+ ids, seqs = read_raw(raw_input)
521
+
522
+ # st.write('====Predict====')
523
+ res_pd = pd.DataFrame()
524
+ for wt_seq, wt_id in zip(seqs, ids):
525
+ try:
526
+ st.write(wt_id, wt_seq)
527
+ res = mutated_seq(wt_seq, wt_id)
528
+ st.write(res)
529
+ res_pd.append(res)
530
+ except:
531
+ st.write('====Please Try Again this sequence: ', wt_id, wt_seq)
532
+ # st.write(pred)
533
+ return res_pd
534
+
535
+ # Run
536
+ if st.button("Predict and Mutate"):
537
+ if uploaded:
538
+ result = predict_raw(uploaded.getvalue().decode())
539
+ else:
540
+ result = predict_raw(seq)
541
+
542
+ result_file = result.to_csv(index=False)
543
+ st.download_button("Download", result_file, file_name=output_filename+".csv")
544
+ st.dataframe(result)
545
+
546
+
547
+
548
+
549
+
550
+
git.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ git add .
2
+ git commit -m "app"
3
+ git push