Spaces:
Runtime error
Runtime error
File size: 10,504 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import os
from dataclasses import dataclass
from typing import Optional
import numpy as np
from coqpit import Coqpit
from encodec import EncodecModel
from transformers import BertTokenizer
from TTS.tts.layers.bark.inference_funcs import (
codec_decode,
generate_coarse,
generate_fine,
generate_text_semantic,
generate_voice,
load_voice,
)
from TTS.tts.layers.bark.load_model import load_model
from TTS.tts.layers.bark.model import GPT
from TTS.tts.layers.bark.model_fine import FineGPT
from TTS.tts.models.base_tts import BaseTTS
@dataclass
class BarkAudioConfig(Coqpit):
sample_rate: int = 24000
output_sample_rate: int = 24000
class Bark(BaseTTS):
def __init__(
self,
config: Coqpit,
tokenizer: BertTokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased"),
) -> None:
super().__init__(config=config, ap=None, tokenizer=None, speaker_manager=None, language_manager=None)
self.config.num_chars = len(tokenizer)
self.tokenizer = tokenizer
self.semantic_model = GPT(config.semantic_config)
self.coarse_model = GPT(config.coarse_config)
self.fine_model = FineGPT(config.fine_config)
self.encodec = EncodecModel.encodec_model_24khz()
self.encodec.set_target_bandwidth(6.0)
@property
def device(self):
return next(self.parameters()).device
def load_bark_models(self):
self.semantic_model, self.config = load_model(
ckpt_path=self.config.LOCAL_MODEL_PATHS["text"], device=self.device, config=self.config, model_type="text"
)
self.coarse_model, self.config = load_model(
ckpt_path=self.config.LOCAL_MODEL_PATHS["coarse"],
device=self.device,
config=self.config,
model_type="coarse",
)
self.fine_model, self.config = load_model(
ckpt_path=self.config.LOCAL_MODEL_PATHS["fine"], device=self.device, config=self.config, model_type="fine"
)
def train_step(
self,
):
pass
def text_to_semantic(
self,
text: str,
history_prompt: Optional[str] = None,
temp: float = 0.7,
base=None,
allow_early_stop=True,
**kwargs,
):
"""Generate semantic array from text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
Returns:
numpy semantic array to be fed into `semantic_to_waveform`
"""
x_semantic = generate_text_semantic(
text,
self,
history_prompt=history_prompt,
temp=temp,
base=base,
allow_early_stop=allow_early_stop,
**kwargs,
)
return x_semantic
def semantic_to_waveform(
self,
semantic_tokens: np.ndarray,
history_prompt: Optional[str] = None,
temp: float = 0.7,
base=None,
):
"""Generate audio array from semantic input.
Args:
semantic_tokens: semantic token output from `text_to_semantic`
history_prompt: history choice for audio cloning
temp: generation temperature (1.0 more diverse, 0.0 more conservative)
Returns:
numpy audio array at sample frequency 24khz
"""
x_coarse_gen = generate_coarse(
semantic_tokens,
self,
history_prompt=history_prompt,
temp=temp,
base=base,
)
x_fine_gen = generate_fine(
x_coarse_gen,
self,
history_prompt=history_prompt,
temp=0.5,
base=base,
)
audio_arr = codec_decode(x_fine_gen, self)
return audio_arr, x_coarse_gen, x_fine_gen
def generate_audio(
self,
text: str,
history_prompt: Optional[str] = None,
text_temp: float = 0.7,
waveform_temp: float = 0.7,
base=None,
allow_early_stop=True,
**kwargs,
):
"""Generate audio array from input text.
Args:
text: text to be turned into audio
history_prompt: history choice for audio cloning
text_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
waveform_temp: generation temperature (1.0 more diverse, 0.0 more conservative)
Returns:
numpy audio array at sample frequency 24khz
"""
x_semantic = self.text_to_semantic(
text,
history_prompt=history_prompt,
temp=text_temp,
base=base,
allow_early_stop=allow_early_stop,
**kwargs,
)
audio_arr, c, f = self.semantic_to_waveform(
x_semantic, history_prompt=history_prompt, temp=waveform_temp, base=base
)
return audio_arr, [x_semantic, c, f]
def generate_voice(self, audio, speaker_id, voice_dir):
"""Generate a voice from the given audio and text.
Args:
audio (str): Path to the audio file.
speaker_id (str): Speaker name.
voice_dir (str): Path to the directory to save the generate voice.
"""
if voice_dir is not None:
voice_dirs = [voice_dir]
try:
_ = load_voice(speaker_id, voice_dirs)
except (KeyError, FileNotFoundError):
output_path = os.path.join(voice_dir, speaker_id + ".npz")
os.makedirs(voice_dir, exist_ok=True)
generate_voice(audio, self, output_path)
def _set_voice_dirs(self, voice_dirs):
def_voice_dir = None
if isinstance(self.config.DEF_SPEAKER_DIR, str):
os.makedirs(self.config.DEF_SPEAKER_DIR, exist_ok=True)
if os.path.isdir(self.config.DEF_SPEAKER_DIR):
def_voice_dir = self.config.DEF_SPEAKER_DIR
_voice_dirs = [def_voice_dir] if def_voice_dir is not None else []
if voice_dirs is not None:
if isinstance(voice_dirs, str):
voice_dirs = [voice_dirs]
_voice_dirs = voice_dirs + _voice_dirs
return _voice_dirs
# TODO: remove config from synthesize
def synthesize(
self, text, config, speaker_id="random", voice_dirs=None, **kwargs
): # pylint: disable=unused-argument
"""Synthesize speech with the given input text.
Args:
text (str): Input text.
config (BarkConfig): Config with inference parameters.
speaker_id (str): One of the available speaker names. If `random`, it generates a random speaker.
speaker_wav (str): Path to the speaker audio file for cloning a new voice. It is cloned and saved in
`voice_dirs` with the name `speaker_id`. Defaults to None.
voice_dirs (List[str]): List of paths that host reference audio files for speakers. Defaults to None.
**kwargs: Model specific inference settings used by `generate_audio()` and `TTS.tts.layers.bark.inference_funcs.generate_text_semantic().
Returns:
A dictionary of the output values with `wav` as output waveform, `deterministic_seed` as seed used at inference,
`text_input` as text token IDs after tokenizer, `voice_samples` as samples used for cloning, `conditioning_latents`
as latents used at inference.
"""
speaker_id = "random" if speaker_id is None else speaker_id
voice_dirs = self._set_voice_dirs(voice_dirs)
history_prompt = load_voice(self, speaker_id, voice_dirs)
outputs = self.generate_audio(text, history_prompt=history_prompt, **kwargs)
return_dict = {
"wav": outputs[0],
"text_inputs": text,
}
return return_dict
def eval_step(self):
...
def forward(self):
...
def inference(self):
...
@staticmethod
def init_from_config(config: "BarkConfig", **kwargs): # pylint: disable=unused-argument
return Bark(config)
# pylint: disable=unused-argument, redefined-builtin
def load_checkpoint(
self,
config,
checkpoint_dir,
text_model_path=None,
coarse_model_path=None,
fine_model_path=None,
hubert_model_path=None,
hubert_tokenizer_path=None,
eval=False,
strict=True,
**kwargs,
):
"""Load a model checkpoints from a directory. This model is with multiple checkpoint files and it
expects to have all the files to be under the given `checkpoint_dir` with the rigth names.
If eval is True, set the model to eval mode.
Args:
config (TortoiseConfig): The model config.
checkpoint_dir (str): The directory where the checkpoints are stored.
ar_checkpoint_path (str, optional): The path to the autoregressive checkpoint. Defaults to None.
diff_checkpoint_path (str, optional): The path to the diffusion checkpoint. Defaults to None.
clvp_checkpoint_path (str, optional): The path to the CLVP checkpoint. Defaults to None.
vocoder_checkpoint_path (str, optional): The path to the vocoder checkpoint. Defaults to None.
eval (bool, optional): Whether to set the model to eval mode. Defaults to False.
strict (bool, optional): Whether to load the model strictly. Defaults to True.
"""
text_model_path = text_model_path or os.path.join(checkpoint_dir, "text_2.pt")
coarse_model_path = coarse_model_path or os.path.join(checkpoint_dir, "coarse_2.pt")
fine_model_path = fine_model_path or os.path.join(checkpoint_dir, "fine_2.pt")
hubert_model_path = hubert_model_path or os.path.join(checkpoint_dir, "hubert.pt")
hubert_tokenizer_path = hubert_tokenizer_path or os.path.join(checkpoint_dir, "tokenizer.pth")
self.config.LOCAL_MODEL_PATHS["text"] = text_model_path
self.config.LOCAL_MODEL_PATHS["coarse"] = coarse_model_path
self.config.LOCAL_MODEL_PATHS["fine"] = fine_model_path
self.config.LOCAL_MODEL_PATHS["hubert"] = hubert_model_path
self.config.LOCAL_MODEL_PATHS["hubert_tokenizer"] = hubert_tokenizer_path
self.load_bark_models()
if eval:
self.eval()
|