import streamlit as st from transformers import pipeline st.cache_resource(ttl=300) pipe = pipeline(task="text-classification",model="yartyjung/Fake-Review-Detector") st.title(":green[Real ] :rainbow[or] :red[Fake]") st.divider() text = st.text_input("Your :red[suspicious] review here :sunglasses:",value="") if st.button("predict"): if text is not None: predictions = pipe(text) if predictions[0]['label'] == 'fake': for p in predictions: st.subheader(f":red[FAKE] :blue[{ round(p['score'] * 100, 1)} %]") elif predictions[0]['label'] == 'real': for p in predictions: st.subheader(f":green[REAL] :blue[{ round(p['score'] * 100, 1)} %]") st.divider() st.markdown(":red[***disclaimer*** This is a prediction by an _AI_, which might turn out incorrect.]") url = "https://huggingface.co/yartyjung/Fake-Review-Detector" st.markdown(":yellow[check out model at this [link](%s)]" % url)