Spaces:
Sleeping
Sleeping
yash
commited on
Commit
·
b7bfdd0
1
Parent(s):
fa15aee
first commit
Browse files- requirements.txt +99 -0
- txt_to_img.py +206 -0
requirements.txt
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.30.1
|
2 |
+
aiofiles==23.2.1
|
3 |
+
altair==5.3.0
|
4 |
+
annotated-types==0.6.0
|
5 |
+
anyio==4.3.0
|
6 |
+
attrs==23.2.0
|
7 |
+
certifi==2024.2.2
|
8 |
+
charset-normalizer==3.3.2
|
9 |
+
click==8.1.7
|
10 |
+
contourpy==1.2.1
|
11 |
+
cycler==0.12.1
|
12 |
+
diffusers==0.27.2
|
13 |
+
dnspython==2.6.1
|
14 |
+
email_validator==2.1.1
|
15 |
+
exceptiongroup==1.2.1
|
16 |
+
fastapi==0.111.0
|
17 |
+
fastapi-cli==0.0.3
|
18 |
+
ffmpy==0.3.2
|
19 |
+
filelock==3.14.0
|
20 |
+
fonttools==4.51.0
|
21 |
+
fsspec==2024.3.1
|
22 |
+
gradio==3.50.2
|
23 |
+
gradio_client==0.6.1
|
24 |
+
h11==0.14.0
|
25 |
+
httpcore==1.0.5
|
26 |
+
httptools==0.6.1
|
27 |
+
httpx==0.27.0
|
28 |
+
huggingface-hub==0.23.0
|
29 |
+
idna==3.7
|
30 |
+
importlib_metadata==7.1.0
|
31 |
+
importlib_resources==6.4.0
|
32 |
+
Jinja2==3.1.4
|
33 |
+
jsonschema==4.22.0
|
34 |
+
jsonschema-specifications==2023.12.1
|
35 |
+
kiwisolver==1.4.5
|
36 |
+
markdown-it-py==3.0.0
|
37 |
+
MarkupSafe==2.1.5
|
38 |
+
matplotlib==3.8.4
|
39 |
+
mdurl==0.1.2
|
40 |
+
mpmath==1.3.0
|
41 |
+
networkx==3.3
|
42 |
+
numpy==1.26.4
|
43 |
+
nvidia-cublas-cu12==12.1.3.1
|
44 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
45 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
46 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
47 |
+
nvidia-cudnn-cu12==8.9.2.26
|
48 |
+
nvidia-cufft-cu12==11.0.2.54
|
49 |
+
nvidia-curand-cu12==10.3.2.106
|
50 |
+
nvidia-cusolver-cu12==11.4.5.107
|
51 |
+
nvidia-cusparse-cu12==12.1.0.106
|
52 |
+
nvidia-nccl-cu12==2.20.5
|
53 |
+
nvidia-nvjitlink-cu12==12.4.127
|
54 |
+
nvidia-nvtx-cu12==12.1.105
|
55 |
+
orjson==3.10.3
|
56 |
+
packaging==24.0
|
57 |
+
pandas==2.2.2
|
58 |
+
pillow==10.3.0
|
59 |
+
psutil==5.9.8
|
60 |
+
pydantic==2.7.1
|
61 |
+
pydantic_core==2.18.2
|
62 |
+
pydub==0.25.1
|
63 |
+
Pygments==2.18.0
|
64 |
+
pyparsing==3.1.2
|
65 |
+
python-dateutil==2.9.0.post0
|
66 |
+
python-dotenv==1.0.1
|
67 |
+
python-multipart==0.0.9
|
68 |
+
pytz==2024.1
|
69 |
+
PyYAML==6.0.1
|
70 |
+
referencing==0.35.1
|
71 |
+
regex==2024.5.10
|
72 |
+
requests==2.31.0
|
73 |
+
rich==13.7.1
|
74 |
+
rpds-py==0.18.1
|
75 |
+
safetensors==0.4.3
|
76 |
+
semantic-version==2.10.0
|
77 |
+
shellingham==1.5.4
|
78 |
+
six==1.16.0
|
79 |
+
sniffio==1.3.1
|
80 |
+
starlette==0.37.2
|
81 |
+
sympy==1.12
|
82 |
+
tokenizers==0.19.1
|
83 |
+
toolz==0.12.1
|
84 |
+
torch==2.3.0
|
85 |
+
torchvision==0.18.0
|
86 |
+
tqdm==4.66.4
|
87 |
+
transformers==4.40.2
|
88 |
+
triton==2.3.0
|
89 |
+
typer==0.12.3
|
90 |
+
typing_extensions==4.11.0
|
91 |
+
tzdata==2024.1
|
92 |
+
ujson==5.10.0
|
93 |
+
urllib3==2.2.1
|
94 |
+
uvicorn==0.29.0
|
95 |
+
uvloop==0.19.0
|
96 |
+
watchfiles==0.21.0
|
97 |
+
websockets==11.0.3
|
98 |
+
xformers==0.0.26.post1
|
99 |
+
zipp==3.18.1
|
txt_to_img.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
from diffusers import ControlNetModel, DDIMScheduler,EulerDiscreteScheduler,EulerAncestralDiscreteScheduler,UniPCMultistepScheduler
|
5 |
+
from diffusers import KDPM2DiscreteScheduler,KDPM2AncestralDiscreteScheduler,PNDMScheduler,StableDiffusionPipeline
|
6 |
+
from diffusers import DPMSolverMultistepScheduler
|
7 |
+
import random
|
8 |
+
|
9 |
+
# pipe = StableDiffusionPipeline.from_pretrained(
|
10 |
+
# "SG161222/Realistic_Vision_V5.1_noVAE",
|
11 |
+
# torch_dtype=torch.float16,
|
12 |
+
# use_safetensors=True,
|
13 |
+
# ).to("cpu")
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def set_pipeline(model_id_repo,scheduler):
|
19 |
+
# pipe = StableDiffusionPipeline.from_single_file(
|
20 |
+
# "/home/ubuntu/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV51_v51VAE.safetensors",
|
21 |
+
# # torch_dtype=torch.float16,
|
22 |
+
# use_safetensors=True,
|
23 |
+
# ).to("cpu")
|
24 |
+
|
25 |
+
|
26 |
+
model_ids_dict = {
|
27 |
+
"dreamshaper": "Lykon/DreamShaper",
|
28 |
+
"deliberate": "soren127/Deliberate",
|
29 |
+
"runwayml": "runwayml/stable-diffusion-v1-5",
|
30 |
+
"Realistic_Vision_V5_1_noVAE":"SG161222/Realistic_Vision_V5.1_noVAE"
|
31 |
+
}
|
32 |
+
model_id = model_id_repo
|
33 |
+
model_repo = model_ids_dict.get(model_id)
|
34 |
+
print("model_repo :",model_repo)
|
35 |
+
|
36 |
+
|
37 |
+
# pipe = StableDiffusionPipeline.from_pretrained(
|
38 |
+
# model_repo,
|
39 |
+
# # torch_dtype=torch.float16, # to run on cpu
|
40 |
+
# use_safetensors=True,
|
41 |
+
# ).to("cpu")
|
42 |
+
|
43 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
44 |
+
model_repo,
|
45 |
+
torch_dtype=torch.float16, # to run on cpu
|
46 |
+
use_safetensors=True,
|
47 |
+
).to("cuda")
|
48 |
+
|
49 |
+
|
50 |
+
scheduler_classes = {
|
51 |
+
"DDIM": DDIMScheduler,
|
52 |
+
"Euler": EulerDiscreteScheduler,
|
53 |
+
"Euler a": EulerAncestralDiscreteScheduler,
|
54 |
+
"UniPC": UniPCMultistepScheduler,
|
55 |
+
"DPM2 Karras": KDPM2DiscreteScheduler,
|
56 |
+
"DPM2 a Karras": KDPM2AncestralDiscreteScheduler,
|
57 |
+
"PNDM": PNDMScheduler,
|
58 |
+
"DPM++ 2M Karras": DPMSolverMultistepScheduler,
|
59 |
+
"DPM++ 2M SDE Karras": DPMSolverMultistepScheduler,
|
60 |
+
}
|
61 |
+
|
62 |
+
sampler_name = scheduler # Example sampler name, replace with the actual value
|
63 |
+
scheduler_class = scheduler_classes.get(sampler_name)
|
64 |
+
|
65 |
+
if scheduler_class is not None:
|
66 |
+
print("sampler_name:",sampler_name)
|
67 |
+
pipe.scheduler = scheduler_class.from_config(pipe.scheduler.config)
|
68 |
+
else:
|
69 |
+
pass
|
70 |
+
|
71 |
+
# # prompt = "a photo of an astronaut riding a horse on mars"
|
72 |
+
# # pipe.enable_attention_slicing()
|
73 |
+
# image = pipe(prompt).images[0]
|
74 |
+
# image.save("1.png")
|
75 |
+
return pipe
|
76 |
+
|
77 |
+
|
78 |
+
def img_args(
|
79 |
+
prompt,
|
80 |
+
negative_prompt,
|
81 |
+
model_id_repo = "Realistic_Vision_V5_1_noVAE",
|
82 |
+
scheduler= "Euler a",
|
83 |
+
height=896,
|
84 |
+
width=896,
|
85 |
+
num_inference_steps = 30,
|
86 |
+
guidance_scale = 7.5,
|
87 |
+
num_images_per_prompt = 1,
|
88 |
+
seed = 0
|
89 |
+
):
|
90 |
+
|
91 |
+
print(model_id_repo)
|
92 |
+
print(scheduler)
|
93 |
+
print(prompt,"&&&&&&&&&&&&&&&&")
|
94 |
+
|
95 |
+
pipe = set_pipeline(model_id_repo,scheduler)
|
96 |
+
|
97 |
+
if seed == 0:
|
98 |
+
seed = random.randint(0,25647981548564)
|
99 |
+
print(f"random seed :{seed}")
|
100 |
+
generator = torch.manual_seed(seed)
|
101 |
+
else:
|
102 |
+
generator = torch.manual_seed(seed)
|
103 |
+
print(f"manual seed :{seed}")
|
104 |
+
|
105 |
+
image = pipe(prompt=prompt,
|
106 |
+
negative_prompt = negative_prompt,
|
107 |
+
height = height,
|
108 |
+
width = width,
|
109 |
+
num_inference_steps = num_inference_steps,
|
110 |
+
guidance_scale = guidance_scale,
|
111 |
+
num_images_per_prompt = num_images_per_prompt, # default 1
|
112 |
+
generator = generator,
|
113 |
+
).images
|
114 |
+
print(image,"#############")
|
115 |
+
# image.save("1.png")
|
116 |
+
return image
|
117 |
+
|
118 |
+
|
119 |
+
block = gr.Blocks().queue()
|
120 |
+
block.title = "Inpaint Anything"
|
121 |
+
with block as image_gen:
|
122 |
+
with gr.Column():
|
123 |
+
with gr.Row():
|
124 |
+
gr.Markdown("## Image Generation")
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
# with gr.Row():
|
128 |
+
prompt = gr.Textbox(placeholder="what you want to generate",label="Positive Prompt")
|
129 |
+
negative_prompt = gr.Textbox(placeholder="what you don't want to generate",label="Negative prompt")
|
130 |
+
run_btn = gr.Button("image generation", elem_id="select_btn", variant="primary")
|
131 |
+
with gr.Accordion(label="Advance Options",open=False):
|
132 |
+
model_selection = gr.Dropdown(choices=["dreamshaper","deliberate","runwayml","Realistic_Vision_V5_1_noVAE"],value="Realistic_Vision_V5_1_noVAE",label="Models")
|
133 |
+
schduler_selection = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value="Euler a",label="Scheduler")
|
134 |
+
guidance_scale_slider = gr.Slider(label="guidance_scale", minimum=0, maximum=15, value=7.5, step=0.5)
|
135 |
+
num_images_per_prompt_slider = gr.Slider(label="num_images_per_prompt", minimum=0, maximum=5, value=1, step=1)
|
136 |
+
height_slider = gr.Slider(label="height", minimum=0, maximum=2048, value=896, step=1)
|
137 |
+
width_slider = gr.Slider(label="width", minimum=0, maximum=2048, value=896, step=1)
|
138 |
+
num_inference_steps_slider = gr.Slider(label="num_inference_steps", minimum=0, maximum=150, value=30, step=1)
|
139 |
+
seed_slider = gr.Slider(label="Seed Slider", minimum=0, maximum=256479815, value=0, step=1)
|
140 |
+
with gr.Column():
|
141 |
+
# out_img = gr.Image(type="pil",label="Output",height=480)
|
142 |
+
out_img = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
|
143 |
+
|
144 |
+
|
145 |
+
run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider],outputs=[out_img])
|
146 |
+
image_gen.launch()
|
147 |
+
|
148 |
+
# block = gr.Blocks().queue()
|
149 |
+
# block.title = "Inpaint Anything"
|
150 |
+
# with block as inpaint_anything_interface:
|
151 |
+
# with gr.Column():
|
152 |
+
# with gr.Row():
|
153 |
+
# gr.Markdown("## Inpainting with Segment Anything (Multi Controlnet)")
|
154 |
+
# with gr.Row():
|
155 |
+
# with gr.Column():
|
156 |
+
# # with gr.Row():
|
157 |
+
# model_selection = gr.Dropdown(choices=["dreamshaper","deliberate","realisticVisionV51_v51VAE","revAnimated_v121Inp","runwayml","Realistic_Vision_V5_1_noVAE"],value = "Realistic_Vision_V5_1_noVAE",label="Models")
|
158 |
+
# # scheduler = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value = "Euler a",label="Sampler")
|
159 |
+
# input_image = gr.Image(type="numpy",label="input",height=400)
|
160 |
+
# run_btn = gr.Button("Run Segment", elem_id="select_btn", variant="primary")
|
161 |
+
|
162 |
+
# prompt = gr.Textbox(placeholder="what you want to generate")
|
163 |
+
# guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=0, maximum=20.0, value=7.5, step=0.5)
|
164 |
+
# inference_slider = gr.Slider(label="Guidance Scale", minimum=0, maximum=150, value=50, step=1)
|
165 |
+
# with gr.Row():
|
166 |
+
# canny_slider = gr.Slider(label="Canny Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
|
167 |
+
# depth_slider = gr.Slider(label="Depth Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
|
168 |
+
# seg_slider = gr.Slider(label="Segment Slider", minimum=0, maximum=1.0, value=0.5, step=0.1)
|
169 |
+
# out_img = gr.Image(type="pil",label="output")
|
170 |
+
# seed_slider = gr.Slider(label="Seed Slider",elem_id="expand_mask_iteration_count", minimum=0, maximum=25647981548564, value=0, step=1)
|
171 |
+
# grn_btn = gr.Button("image generation", elem_id="select_btn", variant="primary")
|
172 |
+
# # bru_btn = gr.Button("Brush generation", elem_id="select_btn", variant="primary")
|
173 |
+
# with gr.Column():
|
174 |
+
# scheduler = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value = "Euler a",label="Sampler")
|
175 |
+
# # lora_chk = gr.Checkbox(label="Use Lora", elem_id="invert_chk", show_label=True, value=False, interactive=True)
|
176 |
+
# # image_out = gr.Image(type="pil",label="Output")
|
177 |
+
# sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
|
178 |
+
# show_label=False, interactive=True,height=400)
|
179 |
+
# mask_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary")
|
180 |
+
# with gr.Column():
|
181 |
+
# with gr.Row():
|
182 |
+
# invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, value=True, interactive=True)
|
183 |
+
# ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True)
|
184 |
+
# lora_chk = gr.Checkbox(label="Use Lora", elem_id="invert_chk", show_label=True, value=False, interactive=True)
|
185 |
+
# with gr.Column():
|
186 |
+
# sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
|
187 |
+
# show_label=False, interactive=True, height=480)
|
188 |
+
# with gr.Column():
|
189 |
+
# with gr.Row():
|
190 |
+
# expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn")
|
191 |
+
# # with gr.Column():
|
192 |
+
# expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations",
|
193 |
+
# elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1)
|
194 |
+
# with gr.Row():
|
195 |
+
# add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn")
|
196 |
+
# apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn")
|
197 |
+
|
198 |
+
|
199 |
+
# run_btn.click(fn=run_seg,inputs=[input_image],outputs=[sam_image])
|
200 |
+
# mask_btn.click(fn=select_mask,inputs=[input_image, sam_image, invert_chk, ignore_black_chk,sel_mask], outputs=[sel_mask])
|
201 |
+
# expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask])
|
202 |
+
# apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask])
|
203 |
+
# add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask])
|
204 |
+
# grn_btn.click(fn=generate_image,inputs=[input_image,sam_image,prompt,seed_slider,canny_slider,depth_slider,seg_slider,model_selection,scheduler,guidance_scale_slider,inference_slider,lora_chk],outputs=[out_img])
|
205 |
+
# bru_btn.click(fn=brush_geeration,inputs=[input_image,prompt],outputs=[out_img])
|
206 |
+
# inpaint_anything_interface.launch()
|