File size: 3,933 Bytes
8bad1e9 d8f6ddc 8bad1e9 d8f6ddc 8bad1e9 a68aeb4 d8f6ddc 8bad1e9 a68aeb4 d8f6ddc d08d0e4 7a56033 d8f6ddc d08d0e4 d8f6ddc fb5dc61 d8f6ddc a68aeb4 733226a d638867 a24ebdf 733226a d08d0e4 7a56033 8bad1e9 55a66c1 8bad1e9 fb5dc61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
from huggingface_hub import InferenceClient
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Initialize messages with system instructions
messages = [{"role": "system", "content": system_message}]
# Add historical conversation
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add the new user message
messages.append({"role": "user", "content": message})
response = ""
# Get the model's response
for response_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = response_chunk.choices[0].delta.content
response += token
response = response.strip()
# Enhanced context-specific relevance check
if is_relevant_to_constitution(response):
return response
# If response does not meet relevance criteria
return "Sorry, I can only provide information related to the Constitution of India. Please ask a question related to the Constitution."
def is_relevant_to_constitution(response):
# Keywords to check in the response
relevant_keywords = [
"constitution", "article", "law", "legal", "rights", "act", "judiciary",
"legislature", "executive", "fundamental", "amendment", "provision",
"policy", "directive", "supreme court", "high court", "legislation",
"government", "election", "parliament", "state", "central", "reform",
"citizen", "equality", "democracy", "directive principles", "fundamental duties",
"preamble", "enforcement", "federalism", "separation of powers", "justice",
"republic", "state legislature", "union territory", "bill", "ordinance",
"convention", "charter", "treaty", "declaration", "proclamation", "amendments",
"compensation", "grievance", "judicial review", "secularism", "socialism",
"pluralism", "sovereignty", "autonomy", "independence", "integrity", "caste",
"reservation", "minorities", "discrimination", "fundamental rights",
"emergency", "state emergency", "national emergency", "local bodies",
"tribunal", "ombudsman", "civil rights", "criminal justice", "human rights"
]
# Check if response contains relevant keywords
return any(keyword in response.lower() for keyword in relevant_keywords)
# Create the Gradio chat interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are an expert assistant specializing in the Constitution of India. Your role is to provide accurate and detailed information about any part of the Constitution, including articles, amendments, schedules, and related legal concepts. When asked about a specific article, amendment, or legal term, provide a comprehensive explanation. If you are unsure or if the query seems to be about something other than the Constitution of India, do your best to relate it to the Constitution. Ensure that all responses are accurate, clear, and directly relevant to the question. If an article, amendment, or term is mentioned, assume it exists and provide the best possible explanation or details about it. ", label="System message", visible=False),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|