Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
-
|
5 |
-
model_name = "Atulit23/meta-llama-indian-constitution"
|
6 |
-
pipe = pipeline("text-generation", model=model_name)
|
7 |
|
8 |
def respond(
|
9 |
message,
|
@@ -13,9 +11,13 @@ def respond(
|
|
13 |
temperature,
|
14 |
top_p,
|
15 |
):
|
|
|
|
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
if val[0]:
|
20 |
messages.append({"role": "user", "content": val[0]})
|
21 |
if val[1]:
|
@@ -23,15 +25,38 @@ def respond(
|
|
23 |
|
24 |
messages.append({"role": "user", "content": message})
|
25 |
|
26 |
-
response =
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
# Create a Gradio ChatInterface
|
30 |
demo = gr.ChatInterface(
|
31 |
respond,
|
32 |
additional_inputs=[
|
33 |
-
gr.Textbox(value="You are a
|
34 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
35 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
36 |
gr.Slider(
|
37 |
minimum=0.1,
|
@@ -41,8 +66,6 @@ demo = gr.ChatInterface(
|
|
41 |
label="Top-p (nucleus sampling)",
|
42 |
),
|
43 |
],
|
44 |
-
title="Constitutional Chatbot",
|
45 |
-
description="Ask questions related to the Indian Constitution."
|
46 |
)
|
47 |
|
48 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
5 |
|
6 |
def respond(
|
7 |
message,
|
|
|
11 |
temperature,
|
12 |
top_p,
|
13 |
):
|
14 |
+
# Limit the number of historical messages to manage memory
|
15 |
+
max_history_length = 10
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
+
|
18 |
+
# Add recent history
|
19 |
+
recent_history = history[-max_history_length:] # Only keep the most recent messages
|
20 |
+
for val in recent_history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
+
response = ""
|
29 |
+
|
30 |
+
try:
|
31 |
+
for response_chunk in client.chat_completion(
|
32 |
+
messages,
|
33 |
+
max_tokens=max_tokens,
|
34 |
+
stream=True,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
):
|
38 |
+
token = response_chunk.choices[0].delta.content
|
39 |
+
response += token
|
40 |
+
|
41 |
+
# Implement a basic check for relevance
|
42 |
+
if not is_constitution_related(response):
|
43 |
+
response = "Sorry, I can only answer questions related to the Constitution of India."
|
44 |
+
|
45 |
+
yield response
|
46 |
+
|
47 |
+
except MemoryError:
|
48 |
+
yield "Error: Memory limit exceeded. Please try again later."
|
49 |
+
|
50 |
+
def is_constitution_related(response):
|
51 |
+
# Perform a simple check to see if the response seems related to the Constitution
|
52 |
+
# This can be improved based on specific needs and feedback
|
53 |
+
return "constitution" in response.lower() or "article" in response.lower()
|
54 |
|
|
|
55 |
demo = gr.ChatInterface(
|
56 |
respond,
|
57 |
additional_inputs=[
|
58 |
+
gr.Textbox(value="You are a knowledgeable assistant specializing in the Constitution of India. Only provide answers related to the Constitution. If the question is not related, inform the user accordingly.", label="System message"),
|
59 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
60 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
61 |
gr.Slider(
|
62 |
minimum=0.1,
|
|
|
66 |
label="Top-p (nucleus sampling)",
|
67 |
),
|
68 |
],
|
|
|
|
|
69 |
)
|
70 |
|
71 |
if __name__ == "__main__":
|