import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Limit the number of historical messages to manage memory max_history_length = 10 messages = [{"role": "system", "content": system_message}] # Add recent history recent_history = history[-max_history_length:] # Only keep the most recent messages for val in recent_history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for response_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = response_chunk.choices[0].delta.content response += token # Implement a basic check for relevance if not is_constitution_related(response): response = "Sorry, I can only answer questions related to the Constitution of India." yield response except MemoryError: yield "Error: Memory limit exceeded. Please try again later." def is_constitution_related(response): # Perform a simple check to see if the response seems related to the Constitution # This can be improved based on specific needs and feedback return "constitution" in response.lower() or "article" in response.lower() demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a knowledgeable assistant specializing in the Constitution of India. Only provide answers related to the Constitution. If the question is not related, inform the user accordingly.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()