Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,181 +7,131 @@ import tensorflow_hub as hub
|
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import io
|
|
|
10 |
|
11 |
-
# Set up logging
|
12 |
-
logging.basicConfig(
|
|
|
|
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# API key and user ID for on-demand
|
16 |
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
|
17 |
external_user_id = 'plugin-1717464304'
|
18 |
|
19 |
-
# Load the keras model
|
20 |
def load_model():
|
21 |
try:
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
custom_objects = {
|
24 |
'KerasLayer': hub.KerasLayer,
|
25 |
-
'BatchNormalization': tf.keras.layers.BatchNormalization
|
|
|
26 |
}
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
model
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
36 |
logger.info("Model loaded successfully")
|
37 |
return model
|
|
|
38 |
except Exception as e:
|
39 |
logger.error(f"Error loading model: {str(e)}")
|
|
|
40 |
raise
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def preprocess_image(image):
|
44 |
try:
|
45 |
# Convert to numpy array if needed
|
46 |
if isinstance(image, Image.Image):
|
47 |
image = np.array(image)
|
48 |
|
|
|
|
|
|
|
49 |
# Ensure image has 3 channels (RGB)
|
50 |
if len(image.shape) == 2: # Grayscale image
|
|
|
51 |
image = np.stack((image,) * 3, axis=-1)
|
52 |
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
|
|
|
53 |
image = image[:, :, :3]
|
54 |
|
55 |
# Resize image to match model's expected input shape
|
56 |
target_size = (224, 224) # Change this to match your model's input size
|
57 |
image = tf.image.resize(image, target_size)
|
|
|
58 |
|
59 |
# Normalize pixel values
|
60 |
image = image / 255.0
|
61 |
|
62 |
# Add batch dimension
|
63 |
image = np.expand_dims(image, axis=0)
|
|
|
64 |
|
65 |
return image
|
66 |
-
except Exception as e:
|
67 |
-
logger.error(f"Error preprocessing image: {str(e)}")
|
68 |
-
raise
|
69 |
-
|
70 |
-
def create_chat_session():
|
71 |
-
try:
|
72 |
-
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
|
73 |
-
create_session_headers = {
|
74 |
-
'apikey': api_key,
|
75 |
-
'Content-Type': 'application/json'
|
76 |
-
}
|
77 |
-
create_session_body = {
|
78 |
-
"pluginIds": [],
|
79 |
-
"externalUserId": external_user_id
|
80 |
-
}
|
81 |
-
|
82 |
-
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
|
83 |
-
response.raise_for_status()
|
84 |
-
return response.json()['data']['id']
|
85 |
-
|
86 |
-
except requests.exceptions.RequestException as e:
|
87 |
-
logger.error(f"Error creating chat session: {str(e)}")
|
88 |
-
raise
|
89 |
-
|
90 |
-
def submit_query(session_id, query, image_analysis=None):
|
91 |
-
try:
|
92 |
-
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
|
93 |
-
submit_query_headers = {
|
94 |
-
'apikey': api_key,
|
95 |
-
'Content-Type': 'application/json'
|
96 |
-
}
|
97 |
-
|
98 |
-
# Include image analysis in the query if available
|
99 |
-
query_with_image = query
|
100 |
-
if image_analysis:
|
101 |
-
query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
|
102 |
-
|
103 |
-
structured_query = f"""
|
104 |
-
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
|
105 |
-
{query_with_image}
|
106 |
-
Return only valid JSON with these fields:
|
107 |
-
- diagnosis_details
|
108 |
-
- probable_diagnoses (array)
|
109 |
-
- treatment_plans (array)
|
110 |
-
- lifestyle_modifications (array)
|
111 |
-
- medications (array of objects with name and dosage)
|
112 |
-
- additional_tests (array)
|
113 |
-
- precautions (array)
|
114 |
-
- follow_up (string)
|
115 |
-
- image_findings (object with prediction and confidence)
|
116 |
-
"""
|
117 |
|
118 |
-
submit_query_body = {
|
119 |
-
"endpointId": "predefined-openai-gpt4o",
|
120 |
-
"query": structured_query,
|
121 |
-
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
|
122 |
-
"responseMode": "sync"
|
123 |
-
}
|
124 |
-
|
125 |
-
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
|
126 |
-
response.raise_for_status()
|
127 |
-
return response.json()
|
128 |
-
|
129 |
-
except requests.exceptions.RequestException as e:
|
130 |
-
logger.error(f"Error submitting query: {str(e)}")
|
131 |
-
raise
|
132 |
-
|
133 |
-
def extract_json_from_answer(answer):
|
134 |
-
"""Extract and clean JSON from the LLM response"""
|
135 |
-
try:
|
136 |
-
return json.loads(answer)
|
137 |
-
except json.JSONDecodeError:
|
138 |
-
try:
|
139 |
-
# Find the first occurrence of '{' and last occurrence of '}'
|
140 |
-
start_idx = answer.find('{')
|
141 |
-
end_idx = answer.rfind('}') + 1
|
142 |
-
if start_idx != -1 and end_idx != 0:
|
143 |
-
json_str = answer[start_idx:end_idx]
|
144 |
-
return json.loads(json_str)
|
145 |
-
except (json.JSONDecodeError, ValueError):
|
146 |
-
logger.error("Failed to parse JSON from response")
|
147 |
-
raise
|
148 |
-
|
149 |
-
def format_prediction(prediction):
|
150 |
-
"""Format model prediction into a standardized structure"""
|
151 |
-
try:
|
152 |
-
# Adjust this based on your model's output format
|
153 |
-
confidence = float(prediction[0][0])
|
154 |
-
return {
|
155 |
-
"prediction": "abnormal" if confidence > 0.5 else "normal",
|
156 |
-
"confidence": round(confidence * 100, 2)
|
157 |
-
}
|
158 |
except Exception as e:
|
159 |
-
logger.error(f"Error
|
160 |
raise
|
161 |
|
162 |
-
# Initialize the model
|
163 |
-
try:
|
164 |
-
model = load_model()
|
165 |
-
except Exception as e:
|
166 |
-
logger.error(f"Failed to initialize model: {str(e)}")
|
167 |
-
model = None
|
168 |
-
|
169 |
def gradio_interface(patient_info, image):
|
170 |
try:
|
171 |
if model is None:
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Process image if provided
|
175 |
image_analysis = None
|
176 |
if image is not None:
|
|
|
177 |
# Preprocess image
|
178 |
processed_image = preprocess_image(image)
|
179 |
|
180 |
# Get model prediction
|
|
|
181 |
prediction = model.predict(processed_image)
|
|
|
182 |
|
183 |
# Format prediction results
|
184 |
-
image_analysis =
|
|
|
|
|
|
|
|
|
185 |
|
186 |
# Create chat session and submit query
|
187 |
session_id = create_chat_session()
|
@@ -194,13 +144,17 @@ def gradio_interface(patient_info, image):
|
|
194 |
# Extract and clean JSON from the response
|
195 |
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
196 |
|
197 |
-
# Format output for better readability
|
198 |
return json.dumps(json_data, indent=2)
|
199 |
-
|
200 |
except Exception as e:
|
201 |
logger.error(f"Error in gradio_interface: {str(e)}")
|
202 |
-
return json.dumps({
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
204 |
iface = gr.Interface(
|
205 |
fn=gradio_interface,
|
206 |
inputs=[
|
@@ -213,7 +167,7 @@ iface = gr.Interface(
|
|
213 |
gr.Image(
|
214 |
label="Medical Image",
|
215 |
type="numpy",
|
216 |
-
interactive=True
|
217 |
)
|
218 |
],
|
219 |
outputs=gr.Textbox(
|
@@ -226,7 +180,15 @@ iface = gr.Interface(
|
|
226 |
)
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
|
232 |
|
|
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
+
import os
|
11 |
|
12 |
+
# Set up logging with more detailed format
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
16 |
+
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
# API key and user ID for on-demand
|
20 |
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
|
21 |
external_user_id = 'plugin-1717464304'
|
22 |
|
|
|
23 |
def load_model():
|
24 |
try:
|
25 |
+
model_path = 'model_epoch_01.h5.keras'
|
26 |
+
|
27 |
+
# Check if model file exists
|
28 |
+
if not os.path.exists(model_path):
|
29 |
+
raise FileNotFoundError(f"Model file not found at {model_path}")
|
30 |
+
|
31 |
+
logger.info(f"Attempting to load model from {model_path}")
|
32 |
+
|
33 |
+
# Define custom objects dictionary
|
34 |
custom_objects = {
|
35 |
'KerasLayer': hub.KerasLayer,
|
36 |
+
'BatchNormalization': tf.keras.layers.BatchNormalization,
|
37 |
+
# Add more custom objects if needed
|
38 |
}
|
39 |
|
40 |
+
# Try loading with different configurations
|
41 |
+
try:
|
42 |
+
logger.info("Attempting to load model with custom objects...")
|
43 |
+
with tf.keras.utils.custom_object_scope(custom_objects):
|
44 |
+
model = tf.keras.models.load_model(model_path, compile=False)
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Failed to load with custom objects: {str(e)}")
|
47 |
+
logger.info("Attempting to load model without custom objects...")
|
48 |
+
model = tf.keras.models.load_model(model_path, compile=False)
|
49 |
+
|
50 |
+
# Verify model loaded correctly
|
51 |
+
if model is None:
|
52 |
+
raise ValueError("Model loading returned None")
|
53 |
|
54 |
+
# Print model summary for debugging
|
55 |
+
model.summary()
|
56 |
logger.info("Model loaded successfully")
|
57 |
return model
|
58 |
+
|
59 |
except Exception as e:
|
60 |
logger.error(f"Error loading model: {str(e)}")
|
61 |
+
logger.error(f"Model loading failed with exception type: {type(e)}")
|
62 |
raise
|
63 |
|
64 |
+
# Initialize the model globally
|
65 |
+
try:
|
66 |
+
logger.info("Initializing model...")
|
67 |
+
model = load_model()
|
68 |
+
logger.info("Model initialization completed")
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
71 |
+
model = None
|
72 |
+
|
73 |
def preprocess_image(image):
|
74 |
try:
|
75 |
# Convert to numpy array if needed
|
76 |
if isinstance(image, Image.Image):
|
77 |
image = np.array(image)
|
78 |
|
79 |
+
# Log image shape and type for debugging
|
80 |
+
logger.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
|
81 |
+
|
82 |
# Ensure image has 3 channels (RGB)
|
83 |
if len(image.shape) == 2: # Grayscale image
|
84 |
+
logger.info("Converting grayscale to RGB")
|
85 |
image = np.stack((image,) * 3, axis=-1)
|
86 |
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
|
87 |
+
logger.info("Converting RGBA to RGB")
|
88 |
image = image[:, :, :3]
|
89 |
|
90 |
# Resize image to match model's expected input shape
|
91 |
target_size = (224, 224) # Change this to match your model's input size
|
92 |
image = tf.image.resize(image, target_size)
|
93 |
+
logger.info(f"Resized image shape: {image.shape}")
|
94 |
|
95 |
# Normalize pixel values
|
96 |
image = image / 255.0
|
97 |
|
98 |
# Add batch dimension
|
99 |
image = np.expand_dims(image, axis=0)
|
100 |
+
logger.info(f"Final preprocessed image shape: {image.shape}")
|
101 |
|
102 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
except Exception as e:
|
105 |
+
logger.error(f"Error preprocessing image: {str(e)}")
|
106 |
raise
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def gradio_interface(patient_info, image):
|
109 |
try:
|
110 |
if model is None:
|
111 |
+
logger.error("Model is not initialized")
|
112 |
+
return json.dumps({
|
113 |
+
"error": "Model initialization failed. Please check the logs for details.",
|
114 |
+
"status": "error"
|
115 |
+
}, indent=2)
|
116 |
|
117 |
# Process image if provided
|
118 |
image_analysis = None
|
119 |
if image is not None:
|
120 |
+
logger.info("Processing uploaded image")
|
121 |
# Preprocess image
|
122 |
processed_image = preprocess_image(image)
|
123 |
|
124 |
# Get model prediction
|
125 |
+
logger.info("Running model prediction")
|
126 |
prediction = model.predict(processed_image)
|
127 |
+
logger.info(f"Raw prediction shape: {prediction.shape}")
|
128 |
|
129 |
# Format prediction results
|
130 |
+
image_analysis = {
|
131 |
+
"prediction": float(prediction[0][0]),
|
132 |
+
"confidence": float(prediction[0][0]) * 100
|
133 |
+
}
|
134 |
+
logger.info(f"Image analysis results: {image_analysis}")
|
135 |
|
136 |
# Create chat session and submit query
|
137 |
session_id = create_chat_session()
|
|
|
144 |
# Extract and clean JSON from the response
|
145 |
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
146 |
|
|
|
147 |
return json.dumps(json_data, indent=2)
|
148 |
+
|
149 |
except Exception as e:
|
150 |
logger.error(f"Error in gradio_interface: {str(e)}")
|
151 |
+
return json.dumps({
|
152 |
+
"error": str(e),
|
153 |
+
"status": "error",
|
154 |
+
"details": "Check the application logs for more information"
|
155 |
+
}, indent=2)
|
156 |
+
|
157 |
+
# Gradio interface
|
158 |
iface = gr.Interface(
|
159 |
fn=gradio_interface,
|
160 |
inputs=[
|
|
|
167 |
gr.Image(
|
168 |
label="Medical Image",
|
169 |
type="numpy",
|
170 |
+
interactive=True
|
171 |
)
|
172 |
],
|
173 |
outputs=gr.Textbox(
|
|
|
180 |
)
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
# Add version information logging
|
184 |
+
logger.info(f"TensorFlow version: {tf.__version__}")
|
185 |
+
logger.info(f"TensorFlow Hub version: {hub.__version__}")
|
186 |
+
logger.info(f"Gradio version: {gr.__version__}")
|
187 |
+
|
188 |
+
iface.launch(
|
189 |
+
server_name="0.0.0.0",
|
190 |
+
debug=True
|
191 |
+
)
|
192 |
|
193 |
|
194 |
|