|
|
|
"""Final WebApp using Gradio.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1a5-p_KZd9Hk0tsKZ_JoqoYeRD3XOQtRK |
|
|
|
# **Task 2 - Web App Development with Gradio** |
|
|
|
## **Gradio Interface for OCR Application** |
|
|
|
In this notebook, I created an interactive web application using Gradio to facilitate the OCR process and allow users to perform keyword searches on the extracted text. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
"""**Library Imports**: |
|
|
|
- In addition to libraries from the first notebook, I imported `gradio` to build the user interface for the application. |
|
""" |
|
|
|
import cv2 |
|
from pytesseract import pytesseract |
|
from transformers import AutoModel, AutoTokenizer |
|
import gradio as gr |
|
|
|
"""**Model and Tesseract Configuration**: |
|
- Similar to the first notebook, I loaded the GOT2 model for English text and configured Tesseract for Hindi text. |
|
""" |
|
|
|
tokenizer_eng = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) |
|
model_eng = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True).eval() |
|
|
|
pytesseract.tesseract_cmd = '/usr/bin/tesseract' |
|
tesseract_config = '--oem 3 --psm 6 -l hin' |
|
|
|
"""**Perform OCR Function**: |
|
- The `perform_ocr` function was adapted to handle image input from the Gradio interface. This function processes the uploaded image based on the selected language and returns the extracted English and Hindi texts. |
|
""" |
|
|
|
def perform_ocr(img, language): |
|
|
|
img_path = "/tmp/uploaded_image.png" |
|
img.save(img_path) |
|
|
|
res_eng = "" |
|
res_hin = "" |
|
|
|
if language in ["English", "Both"]: |
|
res_eng = model_eng.chat(tokenizer_eng, img_path, ocr_type='ocr') |
|
|
|
if language in ["Hindi", "Both"]: |
|
img_cv = cv2.imread(img_path) |
|
res_hin = pytesseract.image_to_string(img_cv, config=tesseract_config) |
|
|
|
return res_eng, res_hin |
|
|
|
"""**Keyword Search Functionality**: |
|
- A new function, `ocr_and_search`, was implemented to allow users to search for keywords within the extracted text. It checks for keyword matches in both English and Hindi texts, providing appropriate feedback. |
|
""" |
|
|
|
def ocr_and_search(image, language, keyword): |
|
|
|
english_text, hindi_text = perform_ocr(image, language) |
|
|
|
extracted_english = f"Extracted English Text:\n{english_text}" if english_text else "No English text extracted." |
|
extracted_hindi = f"Extracted Hindi Text:\n{hindi_text}" if hindi_text else "No Hindi text extracted." |
|
|
|
|
|
search_results = [] |
|
if keyword: |
|
|
|
if language in ["English", "Both"] and keyword.lower() in english_text.lower(): |
|
search_results.append(f"Keyword '{keyword}' found in English text.") |
|
|
|
if language in ["Hindi", "Both"] and keyword.lower() in hindi_text.lower(): |
|
search_results.append(f"Keyword '{keyword}' found in Hindi text.") |
|
|
|
search_output = "\n".join(search_results) if search_results else "No matches found." |
|
|
|
return extracted_english, extracted_hindi, search_output |
|
|
|
"""**Gradio Interface Setup**: |
|
- The user interface is constructed using Gradio's Blocks API, allowing users to upload images, select the desired language for OCR, and enter a keyword for search. |
|
- The outputs are displayed in separate text boxes for extracted English text, extracted Hindi text, and search results. |
|
""" |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown("### OCR Application") |
|
image_input = gr.Image(type="pil", label="Upload Image") |
|
language_selection = gr.Radio(choices=["English", "Hindi", "Both"], label="Select Language") |
|
keyword_input = gr.Textbox(placeholder="Enter keyword to search", label="Keyword Search") |
|
output_english = gr.Textbox(label="Extracted English Text", interactive=False) |
|
output_hindi = gr.Textbox(label="Extracted Hindi Text", interactive=False) |
|
output_search = gr.Textbox(label="Search Results", interactive=False) |
|
|
|
submit_button = gr.Button("Submit") |
|
submit_button.click(fn=ocr_and_search, inputs=[image_input, language_selection, keyword_input], outputs=[output_english, output_hindi, output_search]) |
|
|
|
"""**Application Launch**: |
|
- Finally, the Gradio app is launched, making the OCR application accessible for user interaction. This enables real-time testing and usability of the OCR functionalities implemented in the previous notebook. |
|
""" |
|
|
|
app.launch() |