import gradio as gr import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier, plot_tree from io import BytesIO from PIL import Image # Load available datasets dataset_names = ["iris", "wine", "breast_cancer", "digits"] datasets_dict = { "iris": datasets.load_iris(), "wine": datasets.load_wine(), "breast_cancer": datasets.load_breast_cancer(), "digits": datasets.load_digits(), } # Define the function to visualize the decision tree def visualize_decision_tree(dataset_name, max_depth, min_samples_split, min_samples_leaf, max_features, criterion, splitter, max_leaf_nodes, random_state): dataset = datasets_dict[dataset_name] X, y = dataset.data, dataset.target clf = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, criterion=criterion, splitter=splitter, max_leaf_nodes=max_leaf_nodes, random_state=random_state) clf.fit(X, y) fig, ax = plt.subplots(figsize=(10, 8)) plot_tree(clf, feature_names=dataset.feature_names, class_names=dataset.target_names, filled=True, ax=ax) buf = BytesIO() fig.savefig(buf, format='png') buf.seek(0) image_data = buf.getvalue() image = Image.open(BytesIO(image_data)) return image # Define the hyperparameters and their ranges max_depth_range = [None, 2, 3, 4, 5, 6, 7, 8, 9, 10] min_samples_split_range = [2, 3, 4, 5, 6, 7, 8, 9, 10] min_samples_leaf_range = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] max_features_range = [None, 'sqrt', 'log2', 0.1, 0.2, 0.3, 0.4, 0.5] criterion_range = ['gini', 'entropy'] splitter_range = ['best', 'random'] max_leaf_nodes_range = [None, 2, 3, 4, 5, 6, 7, 8, 9, 10] random_state_range = [None, 42, 100, 200, 300, 400, 500, 600] # Create the Gradio interface dataset_dropdown = gr.components.Dropdown(choices=dataset_names, label="Dataset", value="iris") max_depth_dropdown = gr.components.Dropdown(choices=max_depth_range, label="Max Depth", value=None) min_samples_split_dropdown = gr.components.Dropdown(choices=min_samples_split_range, label="Min Samples Split", value=2) min_samples_leaf_dropdown = gr.components.Dropdown(choices=min_samples_leaf_range, label="Min Samples Leaf", value=1) max_features_dropdown = gr.components.Dropdown(choices=max_features_range, label="Max Features", value=None) criterion_dropdown = gr.components.Dropdown(choices=criterion_range, label="Criterion", value="gini") splitter_dropdown = gr.components.Dropdown(choices=splitter_range, label="Splitter", value="best") max_leaf_nodes_dropdown = gr.components.Dropdown(choices=max_leaf_nodes_range, label="Max Leaf Nodes", value=None) random_state_dropdown = gr.components.Dropdown(choices=random_state_range, label="Random State", value=None) iface = gr.Interface( fn=visualize_decision_tree, inputs=[dataset_dropdown, max_depth_dropdown, min_samples_split_dropdown, min_samples_leaf_dropdown, max_features_dropdown, criterion_dropdown, splitter_dropdown, max_leaf_nodes_dropdown, random_state_dropdown], outputs=gr.Image(type="pil"), title="Decision Tree Visualization", description="Visualize a decision tree classifier on various datasets by adjusting hyperparameters." ) iface.launch()