Spaces:
Paused
Paused
File size: 15,683 Bytes
14c8ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import sys
sys.path.append('./')
from typing import Tuple
import os
import cv2
import math
import torch
import random
import numpy as np
import argparse
import pandas as pd
import PIL
from PIL import Image
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler
from huggingface_hub import hf_hub_download
import insightface
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"
# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(320, 320))
# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'
# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
logo = Image.open("./gradio_demo/logo.png")
from cv2 import imencode
import base64
# def encode_pil_to_base64_new(pil_image):
# print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
# image_arr = np.asarray(pil_image)[:,:,::-1]
# _, byte_data = imencode('.png', image_arr)
# base64_data = base64.b64encode(byte_data)
# base64_string_opencv = base64_data.decode("utf-8")
# return "data:image/png;base64," + base64_string_opencv
import gradio as gr
# gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new
def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
scheduler_kwargs = hf_hub_download(
repo_id="wangqixun/YamerMIX_v8",
subfolder="scheduler",
filename="scheduler_config.json",
)
(tokenizers, text_encoders, unet, _, vae) = load_models_xl(
pretrained_model_name_or_path=pretrained_model_name_or_path,
scheduler_name=None,
weight_dtype=dtype,
)
scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
pipe = StableDiffusionXLInstantIDPipeline(
vae=vae,
text_encoder=text_encoders[0],
text_encoder_2=text_encoders[1],
tokenizer=tokenizers[0],
tokenizer_2=tokenizers[1],
unet=unet,
scheduler=scheduler,
controlnet=controlnet,
).to(device)
else:
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=controlnet,
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_ip_adapter_instantid(face_adapter)
# load and disable LCM
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.disable_lora()
def remove_tips():
return gr.update(visible=False)
# prompts = [
# ["superman","Vibrant Color"], ["japanese anime character with white/neon hair","Watercolor"],
# # ["Suited professional","(No style)"],
# ["Scooba diver","Line art"], ["eskimo","Snow"]
# ]
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[0], n)
# else:
# raise gr.Error("Email ID is compulsory")
def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[1], n)
def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[2], n)
def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[3], n)
# def validate_and_process(face_file, style, email):
# # Your processing logic here
# gallery1, gallery2, gallery3, gallery4 = run_for_prompts1(face_file, style), run_for_prompts2(face_file, style), run_for_prompts3(face_file, style), run_for_prompts4(face_file, style)
# return gallery1, gallery2, gallery3, gallery4
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(input_image, max_side=640, min_side=640, size=None,
pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
print(w)
print(h)
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def store_images(email, gallery1, gallery2, gallery3, gallery4):
galleries = []
for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
print(f"Gallery {i} type after conversion: {type(img)}")
galleries.append(img)
# Create the images directory if it doesn't exist
if not os.path.exists('images'):
os.makedirs('images')
# Define image file paths
image_paths = []
for i, img in enumerate(galleries, start=1):
img_path = f'images/{email}_gallery{i}.png'
img.save(img_path)
image_paths.append(img_path)
# Define the CSV file path
csv_file_path = 'image_data.csv'
# Create a DataFrame for the email and image paths
df = pd.DataFrame({
'email': [email],
'img1_path': [image_paths[0]],
'img2_path': [image_paths[1]],
'img3_path': [image_paths[2]],
'img4_path': [image_paths[3]],
})
# Write to CSV (append if the file exists, create a new one if it doesn't)
if not os.path.isfile(csv_file_path):
df.to_csv(csv_file_path, index=False)
else:
df.to_csv(csv_file_path, mode='a', header=False, index=False)
def generate_image(face_image,prompt,negative_prompt):
pose_image_path = None
# prompt = "superman"
enable_LCM = False
identitynet_strength_ratio = 0.95
adapter_strength_ratio = 0.60
num_steps = 15
guidance_scale = 8.5
seed = random.randint(0, MAX_SEED)
# negative_prompt = ""
# negative_prompt += neg
enhance_face_region = True
if enable_LCM:
pipe.enable_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
else:
pipe.disable_lora()
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
if face_image is None:
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
# if prompt is None:
# prompt = "a person"
# apply the style template
# prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
# face_image = load_image(face_image_path)
face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info['kps'])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
control_mask=control_mask,
controlnet_conditioning_scale=float(identitynet_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
# num_images_per_prompt = 4
).images
print(images[0])
return images[0]
### Description
title = r"""
<h1 align="center">Choose your AVATAR</h1>
"""
description = r"""
<h2> Powered by IDfy </h2>"""
article = r""""""
tips = r""""""
css = '''
.gradio-container {width: 95% !important; background-color: #E6F3FF;}
.image-gallery {height: 100vh !important; overflow: auto;}
.gradio-row .gradio-element { margin: 0 !important; }
'''
with gr.Blocks(css=css) as demo:
title = "<h1 align='center'>Choose your AVATAR</h1>"
description = "<h2> Powered by IDfy </h2>"
# Description
gr.Markdown(title)
with gr.Row():
gr.Image("./gradio_demo/logo.png",scale=0,min_width=50,show_label=False,show_download_button=False)
gr.Markdown(description)
with gr.Row():
with gr.Column():
style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
face_file = gr.Image(label="Upload a photo of your face", type="pil")
submit = gr.Button("Submit", variant="primary")
with gr.Column():
with gr.Row():
gallery1 = gr.Image(label="Generated Images")
gallery2 = gr.Image(label="Generated Images")
with gr.Row():
gallery3 = gr.Image(label="Generated Images")
gallery4 = gr.Image(label="Generated Images")
email = gr.Textbox(label="Email",
info="Enter your email address",
value="")
submit1 = gr.Button("STORE", variant="primary")
usage_tips = gr.Markdown(label="Usage tips of InstantID", value="", visible=False)
# Image upload and processing chain
face_file.upload(remove_tips, outputs=usage_tips).then(run_for_prompts1, inputs=[face_file, style], outputs=[gallery1]).then(run_for_prompts2, inputs=[face_file, style], outputs=[gallery2]).then(run_for_prompts3, inputs=[face_file, style], outputs=[gallery3]).then(run_for_prompts4, inputs=[face_file, style], outputs=[gallery4])
submit.click(remove_tips, outputs=usage_tips).then(run_for_prompts1, inputs=[face_file, style], outputs=[gallery1]).then(run_for_prompts2, inputs=[face_file, style], outputs=[gallery2]).then(run_for_prompts3, inputs=[face_file, style], outputs=[gallery3]).then(run_for_prompts4, inputs=[face_file, style], outputs=[gallery4])
# Store data on button click
submit1.click(
fn=store_images,
inputs=[email,gallery1,gallery2,gallery3,gallery4],
outputs=None)
gr.Markdown("")
demo.launch(share=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
args = parser.parse_args()
main(args.pretrained_model_name_or_path, False) |