Spaces:
Paused
Paused
File size: 61,295 Bytes
14c8ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
# Copyright 2024 The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import cv2
import math
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers.image_processor import PipelineImageInput
from diffusers.models import ControlNetModel
from diffusers.utils import (
deprecate,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers import StableDiffusionXLControlNetPipeline
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils.import_utils import is_xformers_available
from ip_adapter.resampler import Resampler
from ip_adapter.utils import is_torch2_available
if is_torch2_available():
from ip_adapter.attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor
else:
from ip_adapter.attention_processor import IPAttnProcessor, AttnProcessor
from ip_adapter.attention_processor import region_control
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate insightface
>>> import diffusers
>>> from diffusers.utils import load_image
>>> from diffusers.models import ControlNetModel
>>> import cv2
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> from insightface.app import FaceAnalysis
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
>>> # download 'antelopev2' under ./models
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
>>> app.prepare(ctx_id=0, det_size=(640, 640))
>>> # download models under ./checkpoints
>>> face_adapter = f'./checkpoints/ip-adapter.bin'
>>> controlnet_path = f'./checkpoints/ControlNetModel'
>>> # load IdentityNet
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.cuda()
>>> # load adapter
>>> pipe.load_ip_adapter_instantid(face_adapter)
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
>>> # load an image
>>> image = load_image("your-example.jpg")
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
>>> face_emb = face_info['embedding']
>>> face_kps = draw_kps(face_image, face_info['kps'])
>>> pipe.set_ip_adapter_scale(0.8)
>>> # generate image
>>> image = pipe(
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
... ).images[0]
```
"""
from transformers import CLIPTokenizer
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
class LongPromptWeight(object):
"""
Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
"""
def __init__(self) -> None:
pass
def parse_prompt_attention(self, text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
import re
re_attention = re.compile(
r"""
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
\)|]|[^\\()\[\]:]+|:
""",
re.X,
)
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re_break, text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
"""
Get prompt token ids and weights, this function works for both prompt and negative prompt
Args:
pipe (CLIPTokenizer)
A CLIPTokenizer
prompt (str)
A prompt string with weights
Returns:
text_tokens (list)
A list contains token ids
text_weight (list)
A list contains the correspodent weight of token ids
Example:
import torch
from transformers import CLIPTokenizer
clip_tokenizer = CLIPTokenizer.from_pretrained(
"stablediffusionapi/deliberate-v2"
, subfolder = "tokenizer"
, dtype = torch.float16
)
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
clip_tokenizer = clip_tokenizer
,prompt = "a (red:1.5) cat"*70
)
"""
texts_and_weights = self.parse_prompt_attention(prompt)
text_tokens, text_weights = [], []
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
# the returned token is a 1d list: [320, 1125, 539, 320]
# merge the new tokens to the all tokens holder: text_tokens
text_tokens = [*text_tokens, *token]
# each token chunk will come with one weight, like ['red cat', 2.0]
# need to expand weight for each token.
chunk_weights = [weight] * len(token)
# append the weight back to the weight holder: text_weights
text_weights = [*text_weights, *chunk_weights]
return text_tokens, text_weights
def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
"""
Produce tokens and weights in groups and pad the missing tokens
Args:
token_ids (list)
The token ids from tokenizer
weights (list)
The weights list from function get_prompts_tokens_with_weights
pad_last_block (bool)
Control if fill the last token list to 75 tokens with eos
Returns:
new_token_ids (2d list)
new_weights (2d list)
Example:
token_groups,weight_groups = group_tokens_and_weights(
token_ids = token_id_list
, weights = token_weight_list
)
"""
bos, eos = 49406, 49407
# this will be a 2d list
new_token_ids = []
new_weights = []
while len(token_ids) >= 75:
# get the first 75 tokens
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
head_75_weights = [weights.pop(0) for _ in range(75)]
# extract token ids and weights
temp_77_token_ids = [bos] + head_75_tokens + [eos]
temp_77_weights = [1.0] + head_75_weights + [1.0]
# add 77 token and weights chunk to the holder list
new_token_ids.append(temp_77_token_ids)
new_weights.append(temp_77_weights)
# padding the left
if len(token_ids) >= 0:
padding_len = 75 - len(token_ids) if pad_last_block else 0
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
new_token_ids.append(temp_77_token_ids)
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
new_weights.append(temp_77_weights)
return new_token_ids, new_weights
def get_weighted_text_embeddings_sdxl(
self,
pipe: StableDiffusionXLPipeline,
prompt: str = "",
prompt_2: str = None,
neg_prompt: str = "",
neg_prompt_2: str = None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
extra_emb=None,
extra_emb_alpha=0.6,
):
"""
This function can process long prompt with weights, no length limitation
for Stable Diffusion XL
Args:
pipe (StableDiffusionPipeline)
prompt (str)
prompt_2 (str)
neg_prompt (str)
neg_prompt_2 (str)
Returns:
prompt_embeds (torch.Tensor)
neg_prompt_embeds (torch.Tensor)
"""
#
if prompt_embeds is not None and \
negative_prompt_embeds is not None and \
pooled_prompt_embeds is not None and \
negative_pooled_prompt_embeds is not None:
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
if prompt_2:
prompt = f"{prompt} {prompt_2}"
if neg_prompt_2:
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
eos = pipe.tokenizer.eos_token_id
# tokenizer 1
prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
# tokenizer 2
# prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
# neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
# tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
# padding the shorter one for prompt set 1
prompt_token_len = len(prompt_tokens)
neg_prompt_token_len = len(neg_prompt_tokens)
if prompt_token_len > neg_prompt_token_len:
# padding the neg_prompt with eos token
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
else:
# padding the prompt
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
# padding the shorter one for token set 2
prompt_token_len_2 = len(prompt_tokens_2)
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
if prompt_token_len_2 > neg_prompt_token_len_2:
# padding the neg_prompt with eos token
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
else:
# padding the prompt
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
embeds = []
neg_embeds = []
prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
)
prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
prompt_tokens_2.copy(), prompt_weights_2.copy()
)
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
)
# get prompt embeddings one by one is not working.
for i in range(len(prompt_token_groups)):
# get positive prompt embeddings with weights
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
# use first text encoder
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
# use second text encoder
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
pooled_prompt_embeds = prompt_embeds_2[0]
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
for j in range(len(weight_tensor)):
if weight_tensor[j] != 1.0:
token_embedding[j] = (
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
)
token_embedding = token_embedding.unsqueeze(0)
embeds.append(token_embedding)
# get negative prompt embeddings with weights
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
# use first text encoder
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
# use second text encoder
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
for z in range(len(neg_weight_tensor)):
if neg_weight_tensor[z] != 1.0:
neg_token_embedding[z] = (
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
)
neg_token_embedding = neg_token_embedding.unsqueeze(0)
neg_embeds.append(neg_token_embedding)
prompt_embeds = torch.cat(embeds, dim=1)
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
if extra_emb is not None:
extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
def get_prompt_embeds(self, *args, **kwargs):
prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
return prompt_embeds
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
def cuda(self, dtype=torch.float16, use_xformers=False):
self.to('cuda', dtype)
if hasattr(self, 'image_proj_model'):
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
if use_xformers:
if is_xformers_available():
import xformers
from packaging import version
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
self.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
self.set_ip_adapter(model_ckpt, num_tokens, scale)
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
image_proj_model = Resampler(
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=num_tokens,
embedding_dim=image_emb_dim,
output_dim=self.unet.config.cross_attention_dim,
ff_mult=4,
)
image_proj_model.eval()
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
state_dict = torch.load(model_ckpt, map_location="cpu")
if 'image_proj' in state_dict:
state_dict = state_dict["image_proj"]
self.image_proj_model.load_state_dict(state_dict)
self.image_proj_model_in_features = image_emb_dim
def set_ip_adapter(self, model_ckpt, num_tokens, scale):
unet = self.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
else:
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=scale,
num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
unet.set_attn_processor(attn_procs)
state_dict = torch.load(model_ckpt, map_location="cpu")
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
if 'ip_adapter' in state_dict:
state_dict = state_dict['ip_adapter']
ip_layers.load_state_dict(state_dict)
def set_ip_adapter_scale(self, scale):
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
for attn_processor in unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.scale = scale
def _encode_prompt_image_emb(self, prompt_image_emb, device, num_images_per_prompt, dtype, do_classifier_free_guidance):
if isinstance(prompt_image_emb, torch.Tensor):
prompt_image_emb = prompt_image_emb.clone().detach()
else:
prompt_image_emb = torch.tensor(prompt_image_emb)
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
if do_classifier_free_guidance:
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
else:
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
prompt_image_emb = prompt_image_emb.to(device=self.image_proj_model.latents.device,
dtype=self.image_proj_model.latents.dtype)
prompt_image_emb = self.image_proj_model(prompt_image_emb)
bs_embed, seq_len, _ = prompt_image_emb.shape
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_image_emb.to(device=device, dtype=dtype)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
image_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
# IP adapter
ip_adapter_scale=None,
# Enhance Face Region
control_mask = None,
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image. Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 5.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, pooled text embeddings are generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
argument.
image_embeds (`torch.FloatTensor`, *optional*):
Pre-generated image embeddings.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a target image resolution. It should be as same
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeine class.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned containing the output images.
"""
lpw = LongPromptWeight()
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
# 0. set ip_adapter_scale
if ip_adapter_scale is not None:
self.set_ip_adapter_scale(ip_adapter_scale)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt=prompt,
prompt_2=prompt_2,
image=image,
callback_steps=callback_steps,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3.1 Encode input prompt
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = lpw.get_weighted_text_embeddings_sdxl(
pipe=self,
prompt=prompt,
neg_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
# 3.2 Encode image prompt
prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
device,
num_images_per_prompt,
self.unet.dtype,
self.do_classifier_free_guidance)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 4.1 Region control
if control_mask is not None:
mask_weight_image = control_mask
mask_weight_image = np.array(mask_weight_image)
mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
mask_weight_image_tensor = mask_weight_image_tensor[None, None]
h, w = mask_weight_image_tensor.shape[-2:]
control_mask_wight_image_list = []
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
scale_mask_weight_image_tensor = F.interpolate(
mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
else:
control_mask_wight_image_list = None
region_control.prompt_image_conditioning = [dict(region_mask=None)]
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
self._num_timesteps = len(timesteps)
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6.5 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 7.2 Prepare added time ids & embeddings
if isinstance(image, list):
original_size = original_size or image[0].shape[-2:]
else:
original_size = original_size or image.shape[-2:]
target_size = target_size or (height, width)
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
is_unet_compiled = is_compiled_module(self.unet)
is_controlnet_compiled = is_compiled_module(self.controlnet)
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Relevant thread:
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
torch._inductor.cudagraph_mark_step_begin()
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
# controlnet(s) inference
if guess_mode and self.do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
controlnet_added_cond_kwargs = {
"text_embeds": add_text_embeds.chunk(2)[1],
"time_ids": add_time_ids.chunk(2)[1],
}
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
if isinstance(self.controlnet, MultiControlNetModel):
down_block_res_samples_list, mid_block_res_sample_list = [], []
for control_index in range(len(self.controlnet.nets)):
controlnet = self.controlnet.nets[control_index]
if control_index == 0:
# assume fhe first controlnet is IdentityNet
controlnet_prompt_embeds = prompt_image_emb
else:
controlnet_prompt_embeds = prompt_embeds
down_block_res_samples, mid_block_res_sample = controlnet(control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image[control_index],
conditioning_scale=cond_scale[control_index],
guess_mode=guess_mode,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False)
# controlnet mask
if control_index == 0 and control_mask_wight_image_list is not None:
down_block_res_samples = [
down_block_res_sample * mask_weight
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
]
mid_block_res_sample *= control_mask_wight_image_list[-1]
down_block_res_samples_list.append(down_block_res_samples)
mid_block_res_sample_list.append(mid_block_res_sample)
mid_block_res_sample = torch.stack(mid_block_res_sample_list).sum(dim=0)
down_block_res_samples = [torch.stack(down_block_res_samples).sum(dim=0) for down_block_res_samples in
zip(*down_block_res_samples_list)]
else:
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=prompt_image_emb,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
)
# controlnet mask
if control_mask_wight_image_list is not None:
down_block_res_samples = [
down_block_res_sample * mask_weight
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
]
mid_block_res_sample *= control_mask_wight_image_list[-1]
if guess_mode and self.do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=encoder_hidden_states,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
|