Spaces:
Running
on
Zero
Running
on
Zero
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from latex2mathml.converter import convert | |
import gradio as gr | |
import torch | |
import re | |
import spaces | |
# Initialize the model and tokenizer | |
model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
device_map="auto" if device == "cuda" else None | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# System instruction | |
SYSTEM_INSTRUCTION = ( | |
"You are a helpful and patient math tutor tasked with providing step-by-step hints and guidance for solving math problems." | |
"Your primary role is to assist learners in understanding how to approach and solve problems without revealing the final answer, even if explicitly requested." | |
"Always encourage the learner to solve the problem themselves by offering incremental hints and explanations." | |
"Under no circumstances should you provide the complete solution or final answer." | |
) | |
def render_latex_to_mathml(text): | |
""" | |
Converts LaTeX expressions in the text to MathML. | |
""" | |
try: | |
mathml = convert(text) # Converts LaTeX to MathML | |
return f"<math xmlns='http://www.w3.org/1998/Math/MathML'>{mathml}</math>" | |
except Exception as e: | |
return f"<span>Error rendering LaTeX: {str(e)}</span>" | |
def preprocess_response(response): | |
""" | |
Preprocess the response to convert LaTeX expressions in the text to MathML. | |
Only parts of the text that contain LaTeX are converted. | |
""" | |
# Regex patterns to detect LaTeX expressions | |
inline_latex_pattern = r"\$([^\$]+)\$" # Matches inline LaTeX between single $ | |
block_latex_pattern = r"\$\$([^\$]+)\$\$" # Matches block LaTeX between $$ | |
# Replace block LaTeX | |
def replace_block(match): | |
latex_code = match.group(1) | |
try: | |
return render_latex_to_mathml(latex_code) | |
except Exception as e: | |
return f"<span>Error rendering block LaTeX: {str(e)}</span>" | |
# Replace inline LaTeX | |
def replace_inline(match): | |
latex_code = match.group(1) | |
try: | |
return render_latex_to_mathml(latex_code) | |
except Exception as e: | |
return f"<span>Error rendering inline LaTeX: {str(e)}</span>" | |
# First process block LaTeX | |
response = re.sub(block_latex_pattern, replace_block, response) | |
# Then process inline LaTeX | |
response = re.sub(inline_latex_pattern, replace_inline, response) | |
return response | |
def apply_chat_template(messages): | |
""" | |
Prepares the messages for the model using the tokenizer's chat template. | |
""" | |
return tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
def generate_response(chat_history, user_input): | |
""" | |
Generates a response from the model based on the chat history and user input. | |
""" | |
# Append user input to chat history | |
chat_history.append(("User", user_input + "\n\n strinctly prohibited to reveal answer only provide hints and guidelines to solve this")) | |
# Prepare messages for the model | |
messages = [{"role": "system", "content": SYSTEM_INSTRUCTION}] + [ | |
{"role": "user", "content": msg[1]} if msg[0] == "User" else {"role": "assistant", "content": msg[1]} | |
for msg in chat_history | |
] | |
# Tokenize the input for the model | |
text = apply_chat_template(messages) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
# Generate the model's response | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
rendered_response = preprocess_response(response) | |
# Append AI response to chat history | |
chat_history.append(("MathTutor", rendered_response)) | |
# Return updated chat history | |
return chat_history | |
def format_chat_history(history): | |
""" | |
Formats the conversation history for a user-friendly chat display. | |
""" | |
chat_display = "" | |
for message in history: | |
if message["role"] == "user": | |
chat_display += f"**User:** {message['content']}\n\n" | |
elif message["role"] == "assistant": | |
chat_display += f"**MathTutor:** {message['content']}\n\n" | |
return chat_display | |
# Gradio chat interface | |
def create_chat_interface(): | |
""" | |
Creates the Gradio interface for the chat application. | |
""" | |
with gr.Blocks() as chat_app: | |
gr.Markdown("## Math Hint Chat") | |
gr.Markdown( | |
"This chatbot provides hints and step-by-step guidance for solving math problems. " | |
) | |
chatbot = gr.Chatbot(label="Math Tutor Chat", elem_id="chat-container") | |
user_input = gr.Textbox( | |
placeholder="Ask your math question here (e.g., Solve for x: 4x + 5 = 6x + 7)", | |
label="Your Query" | |
) | |
send_button = gr.Button("Send") | |
# Hidden state for managing chat history | |
chat_history = gr.State([]) | |
# Button interaction for chat | |
send_button.click( | |
fn=generate_response, | |
inputs=[chat_history, user_input], | |
outputs=[chatbot] | |
) | |
return chat_app | |
app = create_chat_interface() | |
app.launch(debug=True) |