Spaces:
Sleeping
Sleeping
import os | |
import pickle | |
import h5py | |
import jieba | |
import jieba.analyse as analyse | |
import numpy as np | |
import pandas as pd | |
import torch | |
from scipy.spatial import distance | |
from sklearn import preprocessing | |
from sklearn.decomposition import LatentDirichletAllocation | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from torch.utils.data import Dataset | |
from transformers import BertTokenizer | |
import math | |
import json | |
def str2num(str_x): | |
if isinstance(str_x, float): | |
return str_x | |
elif str_x.isdigit(): | |
return int(str_x) | |
elif 'w' in str_x: | |
return float(str_x[:-1])*10000 | |
elif 'δΊΏ' in str_x: | |
return float(str_x[:-1])*100000000 | |
else: | |
print ("error") | |
print (str_x) | |
class SVFENDDataset(Dataset): | |
def __init__(self, data, data_paths): | |
self.data = data | |
self.text = [] | |
with open(data_paths['ASR_text'], 'r', encoding='utf-8') as file: | |
for line in file: | |
self.text.append(json.loads(line)) | |
# self.text = pd.read_json(data_paths['ASR_text'], lines=True) | |
with open(data_paths['VGGish_audio'], "rb") as fr: | |
self.dict_vid_convfea = pickle.load(fr) | |
self.framefeapath = data_paths['VGG19_frame'] | |
self.c3dfeapath = data_paths['C3D_video'] | |
self.tokenizer = BertTokenizer.from_pretrained('./FakeVD/Models/bert-base-chinese/') | |
def __len__(self): | |
# return self.data.shape[0] | |
return len(self.data) | |
def __getitem__(self, idx): | |
vid = self.data[idx] | |
# text | |
# ιεε葨οΌζ₯ζΎεΉι η video_id | |
for itm in self.text: | |
if itm['video_id'] == vid: | |
text = itm['text'] | |
break | |
title_tokens = self.tokenizer(text, max_length=512, padding='max_length', truncation=True) | |
title_inputid = torch.LongTensor(title_tokens['input_ids']) | |
title_mask = torch.LongTensor(title_tokens['attention_mask']) | |
# comments | |
# audio | |
audioframes = self.dict_vid_convfea[vid] | |
audioframes = torch.FloatTensor(audioframes) | |
# frames | |
frames=pickle.load(open(os.path.join(self.framefeapath,vid+'.pkl'),'rb')) | |
frames=torch.FloatTensor(frames) | |
# video | |
c3d = h5py.File(self.c3dfeapath+vid+".hdf5", "r")[vid]['c3d_features'] | |
c3d = torch.FloatTensor(c3d) | |
# # user | |
return { | |
'label': torch.tensor(-1), | |
'title_inputid': title_inputid, | |
'title_mask': title_mask, | |
'audioframes': audioframes, | |
'frames':frames, | |
'c3d': c3d, | |
# 'comments_inputid': comments_inputid, | |
# 'comments_mask': comments_mask, | |
# 'comments_like': comments_like, | |
# 'intro_inputid': intro_inputid, | |
# 'intro_mask': intro_mask, | |
} | |
def split_word(df): | |
title = df['description'].values | |
comments = df['comments'].apply(lambda x:' '.join(x)).values | |
text = np.concatenate([title, comments],axis=0) | |
analyse.set_stop_words('./data/stopwords.txt') | |
all_word = [analyse.extract_tags(txt) for txt in text.tolist()] | |
corpus = [' '.join(word) for word in all_word] | |
return corpus | |
class FANVMDataset_train(Dataset): | |
def __init__(self, path_vid_train): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.framefeapath='./data/ptvgg19_frames/' | |
self.thumbframefeapath='./data/ptvgg19_frame_thumb/' | |
self.vid_train = [] | |
with open('./data/vids/'+path_vid_train, "r") as fr: | |
for line in fr.readlines(): | |
self.vid_train.append(line.strip()) | |
self.data_train = self.data_complete[self.data_complete.video_id.isin(self.vid_train)] | |
self.data_train['video_id'] = self.data_train['video_id'].astype('category') | |
self.data_train['video_id'].cat.set_categories(self.vid_train, inplace=True) | |
self.data_train.sort_values('video_id', ascending=True, inplace=True) | |
self.data_train.reset_index(inplace=True) | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') | |
corpus = split_word(self.data_train) | |
tfidf = TfidfVectorizer().fit_transform(corpus) | |
lda = LatentDirichletAllocation(n_components=15,random_state=2022) | |
docres = lda.fit_transform(tfidf) | |
self.topic_title = [] | |
s = [] | |
for idx in range(self.data_train.shape[0]): | |
theta_title = docres[idx] | |
self.topic_title.append(theta_title) | |
theta_comments = docres[idx+self.data_train.shape[0]] | |
s.append(distance.jensenshannon(theta_title, theta_comments) ** 2) | |
min_max_scaler = preprocessing.MinMaxScaler() | |
s_minMax = min_max_scaler.fit_transform(np.array(s).reshape(-1, 1)) | |
self.s_minMax = s_minMax.reshape(s_minMax.shape[0]) | |
def __len__(self): | |
return self.data_train.shape[0] | |
def __getitem__(self, idx): | |
item = self.data_train.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
title_tokens = self.tokenizer(item['description'], max_length=512, padding='max_length', truncation=True) | |
title_inputid = torch.LongTensor(title_tokens['input_ids']) | |
title_mask = torch.LongTensor(title_tokens['attention_mask']) | |
comments_inputid = [] | |
comments_mask = [] | |
for comment in item['comments']: | |
comment_tokens = self.tokenizer(comment, max_length=250, padding='max_length', truncation=True) | |
comments_inputid.append(comment_tokens['input_ids']) | |
comments_mask.append(comment_tokens['attention_mask']) | |
comments_inputid = torch.LongTensor(comments_inputid) | |
comments_mask = torch.LongTensor(comments_mask) | |
comments_like = [] | |
for num in item['comments_like']: | |
num_like = num.split(" ")[0] | |
comments_like.append(str2num(num_like)) | |
comments_like = torch.tensor(comments_like) | |
frames=pickle.load(open(os.path.join(self.framefeapath,vid+'.pkl'),'rb')) | |
frames=torch.FloatTensor(frames) | |
frame_thmub = pickle.load(open(os.path.join(self.thumbframefeapath,vid+'.pkl'),'rb')) | |
frame_thmub = torch.FloatTensor(frame_thmub) | |
s = self.s_minMax[idx] | |
s = torch.tensor(s) | |
topic_title = self.topic_title[idx] | |
topic_title = torch.FloatTensor(topic_title) | |
return { | |
'label': label, | |
'title_inputid': title_inputid, | |
'title_mask': title_mask, | |
'comments_inputid': comments_inputid, | |
'comments_mask': comments_mask, | |
'comments_like': comments_like, | |
'frames':frames, | |
'frame_thmub':frame_thmub, | |
's':s, | |
'label_event':topic_title, | |
} | |
class FANVMDataset_test(Dataset): | |
def __init__(self, path_vid_train, path_vid_test): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.framefeapath='./data/ptvgg19_frames/' | |
self.thumbframefeapath='./data/ptvgg19_frame_thumb/' | |
self.vid_train = [] | |
with open('./data/vids/'+path_vid_train, "r") as fr: | |
for line in fr.readlines(): | |
self.vid_train.append(line.strip()) | |
self.data_train = self.data_complete[self.data_complete.video_id.isin(self.vid_train)] | |
self.data_train['video_id'] = self.data_train['video_id'].astype('category') | |
self.data_train['video_id'].cat.set_categories(self.vid_train, inplace=True) | |
self.data_train.sort_values('video_id', ascending=True, inplace=True) | |
self.data_train.reset_index(inplace=True) | |
self.vid_test = [] | |
with open('./data/vids/'+path_vid_test, "r") as fr: | |
for line in fr.readlines(): | |
self.vid_test.append(line.strip()) | |
self.data_test = self.data_complete[self.data_complete.video_id.isin(self.vid_test)] | |
self.data_test['video_id'] = self.data_test['video_id'].astype('category') | |
self.data_test['video_id'].cat.set_categories(self.vid_test, inplace=True) | |
self.data_test.sort_values('video_id', ascending=True, inplace=True) | |
self.data_test.reset_index(inplace=True) | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') | |
# Use data_train to train | |
corpus_train = split_word(self.data_train) | |
tfidf = TfidfVectorizer() | |
tfidf_matrix_train = tfidf.fit_transform(corpus_train) | |
lda = LatentDirichletAllocation(n_components=15,random_state=2022) | |
lda.fit(tfidf_matrix_train) | |
# apply on data_test | |
corpus_test = split_word(self.data_test) | |
tfidf_matrix_test = tfidf.transform(corpus_test) | |
docres = lda.transform(tfidf_matrix_test) | |
s = [] | |
self.topic_title = [] | |
for idx in range(self.data_test.shape[0]): | |
theta_title = docres[idx] | |
self.topic_title.append(theta_title) | |
theta_comments = docres[idx+self.data_test.shape[0]] | |
s.append(distance.jensenshannon(theta_title, theta_comments) ** 2) | |
min_max_scaler = preprocessing.MinMaxScaler() | |
s_minMax = min_max_scaler.fit_transform(np.array(s).reshape(-1, 1)) | |
self.s_minMax = s_minMax.reshape(s_minMax.shape[0]) | |
def __len__(self): | |
return self.data_test.shape[0] | |
def __getitem__(self, idx): | |
item = self.data_test.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
title_tokens = self.tokenizer(item['description'], max_length=512, padding='max_length', truncation=True) | |
title_inputid = torch.LongTensor(title_tokens['input_ids']) | |
title_mask = torch.LongTensor(title_tokens['attention_mask']) | |
comments_inputid = [] | |
comments_mask = [] | |
for comment in item['comments']: | |
comment_tokens = self.tokenizer(comment, max_length=250, padding='max_length', truncation=True) | |
comments_inputid.append(comment_tokens['input_ids']) | |
comments_mask.append(comment_tokens['attention_mask']) | |
comments_inputid = torch.LongTensor(comments_inputid) | |
comments_mask = torch.LongTensor(comments_mask) | |
comments_like = [] | |
for num in item['comments_like']: | |
num_like = num.split(" ")[0] | |
comments_like.append(str2num(num_like)) | |
comments_like = torch.tensor(comments_like) | |
frames=pickle.load(open(os.path.join(self.framefeapath,vid+'.pkl'),'rb')) | |
frames=torch.FloatTensor(frames) | |
frame_thmub = pickle.load(open(os.path.join(self.thumbframefeapath,vid+'.pkl'),'rb')) | |
frame_thmub = torch.FloatTensor(frame_thmub) | |
s = self.s_minMax[idx] | |
s = torch.tensor(s) | |
topic_title = self.topic_title[idx] | |
topic_title = torch.FloatTensor(topic_title) | |
return { | |
'label': label, | |
'title_inputid': title_inputid, | |
'title_mask': title_mask, | |
'comments_inputid': comments_inputid, | |
'comments_mask': comments_mask, | |
'comments_like': comments_like, | |
'frames':frames, | |
'frame_thmub':frame_thmub, | |
's':s, | |
'label_event':topic_title, | |
} | |
class TikTecDataset(Dataset): | |
def __init__(self, path_vid): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open(f'./data/vids/{path_vid}', "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete['video_id'].isin(self.vid)] | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['label']=='ε' else 0 | |
label = torch.tensor(label) | |
max_K = 200 # max num of frames | |
max_N = 500 # max num of ASR words | |
# get caption feature | |
with open('./data/caption_w2v_pad%s.pkl' % vid, 'rb') as f: | |
caption_feature = pickle.load(f) # (num_frame, 100, 300) | |
if max_K / caption_feature.shape[0] >= 2: | |
times = math.floor(max_K / caption_feature.shape[0]) | |
caption_feature = caption_feature.repeat_interleave(times, dim=0) | |
elif caption_feature.shape[0] > max_K: | |
times = math.ceil(caption_feature.shape[0] / max_K) | |
caption_feature = caption_feature[::times][:max_K] | |
actual_K = caption_feature.shape[0] | |
caption_feature = torch.cat([caption_feature, torch.zeros((max_K - caption_feature.shape[0], 100, 300))], dim=0) | |
# get visual feature | |
with open( './data/vgg19_result%s.pkl' % vid, 'rb') as f: | |
visual_feature = pickle.load(f) # (num_frame, 45, 1000) | |
if max_K / visual_feature.shape[0] >= 2: | |
times = math.floor(max_K / visual_feature.shape[0]) | |
visual_feature = visual_feature.repeat_interleave(times, dim=0) | |
elif visual_feature.shape[0] > max_K: | |
times = math.ceil(visual_feature.shape[0] / max_K) | |
visual_feature = visual_feature[::times][:max_K] | |
visual_feature = torch.cat([visual_feature, torch.zeros((max_K - visual_feature.shape[0], 45, 1000))], dim=0) | |
# get ASR feature | |
with open('./data/asr_w2v+mfcc%s.pkl' % vid, 'rb') as f: | |
asr_feature = pickle.load(f) # (num_word, 300+650) | |
asr_feature = asr_feature[:max_N] | |
actual_N = asr_feature.shape[0] | |
asr_feature = torch.cat([asr_feature, torch.zeros((max_N - asr_feature.shape[0], 300+650))], dim=0) | |
# get frames mask & ASR words mask | |
mask_K = torch.zeros(max_K, dtype=torch.int) | |
mask_K[:actual_K] = 1 | |
mask_N = torch.zeros(max_N, dtype=torch.int) | |
mask_N[:actual_N] = 1 | |
if actual_N == 0: | |
mask_N[:] = 1 | |
return { | |
'label': label, | |
'caption_feature': caption_feature, | |
'visual_feature': visual_feature, | |
'asr_feature': asr_feature, | |
'mask_K': mask_K, | |
'mask_N': mask_N, | |
} | |
class C3DDataset(Dataset): | |
def __init__(self, path_vid): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open('./data/vids/'+path_vid, "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete.video_id.isin(self.vid)] | |
self.data['video_id'] = self.data['video_id'].astype('category') | |
self.data['video_id'].cat.set_categories(self.vid, inplace=True) | |
self.data.sort_values('video_id', ascending=True, inplace=True) | |
self.data.reset_index(inplace=True) | |
self.c3dfeapath='./data/c3d/' | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
c3d = h5py.File(self.c3dfeapath+vid+".hdf5", "r")[vid]['c3d_features'] | |
c3d = torch.FloatTensor(c3d) | |
return { | |
'label': label, | |
'c3d': c3d, | |
} | |
class VGGDataset(Dataset): | |
def __init__(self, path_vid): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open('./data/vids/'+path_vid, "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete.video_id.isin(self.vid)] | |
self.data['video_id'] = self.data['video_id'].astype('category') | |
self.data['video_id'].cat.set_categories(self.vid, inplace=True) | |
self.data.sort_values('video_id', ascending=True, inplace=True) | |
self.data.reset_index(inplace=True) | |
self.framefeapath='./data/ptvgg19_frames/' | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
frames=pickle.load(open(os.path.join(self.framefeapath,vid+'.pkl'),'rb')) | |
frames=torch.FloatTensor(frames) | |
return { | |
'label': label, | |
'frames': frames, | |
} | |
class BboxDataset(Dataset): | |
def __init__(self, path_vid): | |
self.data_complete = pd.read_json('./data/data_5500_revised.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open('./data/vids/'+path_vid, "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete.video_id.isin(self.vid)] | |
self.data['video_id'] = self.data['video_id'].astype('category') | |
self.data['video_id'].cat.set_categories(self.vid, inplace=True) | |
self.data.sort_values('video_id', ascending=True, inplace=True) | |
self.data.reset_index(inplace=True) | |
self.bboxfeapath = './data/bbox_vgg19/' | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
bbox_vgg = pickle.load(open(os.path.join(self.bboxfeapath,vid+'.pkl'),'rb')) | |
bbox_vgg = torch.FloatTensor(bbox_vgg) | |
return { | |
'label': label, | |
'bbox_vgg': bbox_vgg | |
} | |
class Title_W2V_Dataset(Dataset): | |
def __init__(self, path_vid, wv_from_text): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open('./data/vids/'+path_vid, "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete.video_id.isin(self.vid)] | |
self.data['video_id'] = self.data['video_id'].astype('category') | |
self.data['video_id'].cat.set_categories(self.vid, inplace=True) | |
self.data.sort_values('video_id', ascending=True, inplace=True) | |
self.data.reset_index(inplace=True) | |
self.wv_from_text = wv_from_text | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
text = item['description']+' '+item['ocr'] | |
title_w2v = [] | |
for word in jieba.cut(text, cut_all=False): | |
if self.wv_from_text.__contains__(word): | |
try: | |
title_w2v.append(self.wv_from_text[word]) | |
except: | |
continue | |
title_w2v = torch.FloatTensor(title_w2v) | |
return { | |
'label': label, | |
'title_w2v': title_w2v, | |
} | |
class CommentsDataset(Dataset): | |
def __init__(self, path_vid): | |
self.data_complete = pd.read_json('./data/data.json',orient='records',dtype=False,lines=True) | |
self.vid = [] | |
with open('./data/vids/'+path_vid, "r") as fr: | |
for line in fr.readlines(): | |
self.vid.append(line.strip()) | |
self.data = self.data_complete[self.data_complete.video_id.isin(self.vid)] | |
self.data['video_id'] = self.data['video_id'].astype('category') | |
self.data['video_id'].cat.set_categories(self.vid, inplace=True) | |
self.data.sort_values('video_id', ascending=True, inplace=True) | |
self.data.reset_index(inplace=True) | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') | |
hascomments = self.data['comments'].apply(lambda x:len(x)>0) | |
self.data = self.data[hascomments] | |
print (self.data.shape) | |
def __len__(self): | |
return self.data.shape[0] | |
def __getitem__(self, idx): | |
item = self.data.iloc[idx] | |
vid = item['video_id'] | |
label = 1 if item['annotation']=='ε' else 0 | |
label = torch.tensor(label) | |
comments_inputid = [] | |
comments_mask = [] | |
for comment in item['comments']: | |
comment_tokens = self.tokenizer(comment, max_length=250, padding='max_length', truncation=True) | |
comments_inputid.append(comment_tokens['input_ids']) | |
comments_mask.append(comment_tokens['attention_mask']) | |
comments_inputid = torch.LongTensor(comments_inputid) | |
comments_mask = torch.LongTensor(comments_mask) | |
comments_like = [] | |
for num in item['comments_like']: | |
num_like = num.split(" ")[0] | |
comments_like.append(str2num(num_like)) | |
comments_like = torch.tensor(comments_like) | |
return { | |
'label': label, | |
'comments_inputid': comments_inputid, | |
'comments_mask': comments_mask, | |
'comments_like': comments_like, | |
} | |