Spaces:
Runtime error
Runtime error
ybbwcwaps
commited on
Commit
·
3cc4a06
1
Parent(s):
11ce3fc
AI Video
Browse files- .gitignore +11 -0
- app.py +32 -0
- dataset_paths.py +14 -0
- datasetss/__init__.py +66 -0
- datasetss/datasets.py +108 -0
- models/__init__.py +48 -0
- models/clip/__init__.py +1 -0
- models/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- models/clip/clip.py +237 -0
- models/clip/model.py +452 -0
- models/clip/simple_tokenizer.py +132 -0
- models/clip_models.py +24 -0
- models/imagenet_models.py +40 -0
- models/resnet.py +337 -0
- models/transformer.py +187 -0
- models/vgg.py +120 -0
- models/vision_transformer.py +481 -0
- models/vision_transformer_misc.py +163 -0
- models/vision_transformer_utils.py +549 -0
- networks/__init__.py +0 -0
- networks/base_model.py +41 -0
- networks/trainer.py +78 -0
- networks/validator.py +46 -0
- options/__init__.py +2 -0
- options/base_options.py +114 -0
- options/test_options.py +19 -0
- options/train_options.py +25 -0
- requirements.txt +38 -0
- run.py +83 -0
- train.py +97 -0
- utilss/earlystop.py +60 -0
- utilss/logger.py +34 -0
- validate.py +153 -0
.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
*.tfevents
|
3 |
+
*.pth
|
4 |
+
*.h5
|
5 |
+
*.msgpack
|
6 |
+
*.bin
|
7 |
+
*.safetensors
|
8 |
+
*.pt
|
9 |
+
*.pickle
|
10 |
+
_test_epoch4_0.7943
|
11 |
+
test.ipynb
|
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from run import get_model, detect_video
|
3 |
+
from FakeVD.code_test import predict
|
4 |
+
import os
|
5 |
+
os.environ['GRADIO_TEMP_DIR'] = "../cache/"
|
6 |
+
|
7 |
+
model = get_model()
|
8 |
+
FakeVD_model = predict.get_model()
|
9 |
+
|
10 |
+
def greet(video):
|
11 |
+
print(video, type(video))
|
12 |
+
generated_pred = detect_video(video_path=video, model=model)
|
13 |
+
context_pred = predict.main(FakeVD_model, video)
|
14 |
+
|
15 |
+
generated_output = f"Fake: {generated_pred*100:.2f}%" if generated_pred > 0.5 else f"Real: {(1-generated_pred)*100:.2f}%"
|
16 |
+
context_output = f"Fake: {context_pred*100:.2f}%" if context_pred > 0.5 else f"Real: {(1-context_pred)*100:.2f}%"
|
17 |
+
print(generated_output, '\n', context_output)
|
18 |
+
return generated_output, context_output
|
19 |
+
|
20 |
+
with gr.Blocks() as demo:
|
21 |
+
gr.Markdown("# Fake Video Detector")
|
22 |
+
with gr.Tabs():
|
23 |
+
with gr.TabItem("Video Detect"):
|
24 |
+
with gr.Column():
|
25 |
+
video_input = gr.Video(height=330)
|
26 |
+
video_button = gr.Button("detect")
|
27 |
+
detect_output = gr.Textbox(label="AI detect result")
|
28 |
+
context_output = gr.Textbox(label="Context detect result")
|
29 |
+
|
30 |
+
video_button.click(greet, inputs=video_input, outputs=[detect_output, context_output])
|
31 |
+
|
32 |
+
demo.launch()
|
dataset_paths.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET_PATHS = [
|
2 |
+
dict(
|
3 |
+
real_path='/mnt/data2/group2024-lhj/t2v/data/train/true',
|
4 |
+
fake_path='/mnt/data2/group2024-lhj/t2v/data/train/fake',
|
5 |
+
data_mode='train',
|
6 |
+
key='VideoCraft2'
|
7 |
+
),
|
8 |
+
dict(
|
9 |
+
real_path='/mnt/data2/group2024-lhj/t2v/data/test/true',
|
10 |
+
fake_path='/mnt/data2/group2024-lhj/t2v/data/test/fake',
|
11 |
+
data_mode='test',
|
12 |
+
key='VideoCraft2'
|
13 |
+
),
|
14 |
+
]
|
datasetss/__init__.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import torch.utils
|
4 |
+
import torch.utils.data
|
5 |
+
from torch.utils.data.sampler import WeightedRandomSampler
|
6 |
+
import torch.distributed as dist
|
7 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
8 |
+
|
9 |
+
from .datasets import RealFakeDataset
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def get_bal_sampler(dataset):
|
14 |
+
targets = []
|
15 |
+
for d in dataset.datasets:
|
16 |
+
targets.extend(d.targets)
|
17 |
+
|
18 |
+
ratio = np.bincount(targets)
|
19 |
+
w = 1. / torch.tensor(ratio, dtype=torch.float)
|
20 |
+
sample_weights = w[targets]
|
21 |
+
sampler = WeightedRandomSampler(weights=sample_weights,
|
22 |
+
num_samples=len(sample_weights))
|
23 |
+
return sampler
|
24 |
+
|
25 |
+
|
26 |
+
def create_train_val_dataloader(opt, clip_model, transform, k_split: float):
|
27 |
+
shuffle = not opt.serial_batches if (opt.isTrain and not opt.class_bal) else False
|
28 |
+
|
29 |
+
dataset = RealFakeDataset(opt, clip_model, transform)
|
30 |
+
|
31 |
+
# 划分训练集和验证集
|
32 |
+
dataset_size = len(dataset)
|
33 |
+
train_size = int(dataset_size * k_split)
|
34 |
+
val_size = dataset_size - train_size
|
35 |
+
|
36 |
+
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
|
37 |
+
|
38 |
+
train_loader = torch.utils.data.DataLoader(train_dataset,
|
39 |
+
batch_size=opt.batch_size,
|
40 |
+
shuffle=False,
|
41 |
+
num_workers=16
|
42 |
+
)
|
43 |
+
val_loader = torch.utils.data.DataLoader(val_dataset,
|
44 |
+
batch_size=opt.batch_size,
|
45 |
+
shuffle=False,
|
46 |
+
num_workers=16
|
47 |
+
)
|
48 |
+
|
49 |
+
return train_loader, val_loader
|
50 |
+
|
51 |
+
|
52 |
+
def create_test_dataloader(opt, clip_model, transform):
|
53 |
+
shuffle = not opt.serial_batches if (opt.isTrain and not opt.class_bal) else False
|
54 |
+
|
55 |
+
dataset = RealFakeDataset(opt, clip_model, transform)
|
56 |
+
|
57 |
+
sampler = get_bal_sampler(dataset) if opt.class_bal else None
|
58 |
+
|
59 |
+
|
60 |
+
data_loader = torch.utils.data.DataLoader(dataset,
|
61 |
+
batch_size=opt.batch_size,
|
62 |
+
shuffle=shuffle,
|
63 |
+
sampler=sampler,
|
64 |
+
num_workers=16
|
65 |
+
)
|
66 |
+
return data_loader
|
datasetss/datasets.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchvision.datasets as datasets
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from torchvision.io import read_video
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from random import random, choice, shuffle
|
10 |
+
from io import BytesIO
|
11 |
+
from PIL import Image
|
12 |
+
from PIL import ImageFile
|
13 |
+
from scipy.ndimage.filters import gaussian_filter
|
14 |
+
import pickle
|
15 |
+
import os
|
16 |
+
|
17 |
+
|
18 |
+
MEAN = {
|
19 |
+
"imagenet":[0.485, 0.456, 0.406],
|
20 |
+
"clip":[0.48145466, 0.4578275, 0.40821073]
|
21 |
+
}
|
22 |
+
|
23 |
+
STD = {
|
24 |
+
"imagenet":[0.229, 0.224, 0.225],
|
25 |
+
"clip":[0.26862954, 0.26130258, 0.27577711]
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def recursively_read(rootdir, must_contain, exts=["mp4", "avi"]):
|
31 |
+
out = []
|
32 |
+
for r, d, f in os.walk(rootdir):
|
33 |
+
for file in f:
|
34 |
+
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
|
35 |
+
out.append(os.path.join(r, file))
|
36 |
+
return out
|
37 |
+
|
38 |
+
def get_list(path, must_contain=''):
|
39 |
+
image_list = recursively_read(path, must_contain)
|
40 |
+
return image_list
|
41 |
+
|
42 |
+
|
43 |
+
def uniform_capture_video_frames(path, num_frames=16):
|
44 |
+
capture = cv2.VideoCapture(path)
|
45 |
+
total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
46 |
+
frame_interval = total_frames // num_frames
|
47 |
+
|
48 |
+
frames = []
|
49 |
+
frame_count = 0
|
50 |
+
|
51 |
+
while len(frames) < num_frames:
|
52 |
+
ret, frame = capture.read()
|
53 |
+
if not ret:
|
54 |
+
break
|
55 |
+
if frame_count % frame_interval == 0:
|
56 |
+
# 将OpenCV的BGR图像转换为RGB图像
|
57 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
58 |
+
# 将numpy数组转换为PIL图像
|
59 |
+
pil_image = Image.fromarray(frame_rgb)
|
60 |
+
frames.append(pil_image)
|
61 |
+
frame_count += 1
|
62 |
+
|
63 |
+
capture.release()
|
64 |
+
return frames
|
65 |
+
|
66 |
+
|
67 |
+
class RealFakeDataset(Dataset):
|
68 |
+
def __init__(self, opt, clip_model=None, transform=None, num_frames=16):
|
69 |
+
self.opt = opt
|
70 |
+
assert opt.data_label in ["train", "val"]
|
71 |
+
self.data_label = opt.data_label
|
72 |
+
self.num_frames = num_frames
|
73 |
+
real_list = get_list( os.path.join(opt.real_list_path) )
|
74 |
+
fake_list = get_list( os.path.join(opt.fake_list_path) )
|
75 |
+
|
76 |
+
|
77 |
+
# setting the labels for the dataset
|
78 |
+
self.labels_dict = {}
|
79 |
+
for i in real_list:
|
80 |
+
self.labels_dict[i] = 0
|
81 |
+
for i in fake_list:
|
82 |
+
self.labels_dict[i] = 1
|
83 |
+
|
84 |
+
self.total_list = real_list + fake_list
|
85 |
+
shuffle(self.total_list)
|
86 |
+
|
87 |
+
self.transform = transform
|
88 |
+
|
89 |
+
|
90 |
+
def __len__(self):
|
91 |
+
return len(self.total_list)
|
92 |
+
|
93 |
+
|
94 |
+
def __getitem__(self, idx):
|
95 |
+
img_path = self.total_list[idx]
|
96 |
+
label = self.labels_dict[img_path]
|
97 |
+
# img = Image.open(img_path).convert("RGB")
|
98 |
+
# video_frames = uniform_capture_video_frames(img_path, num_frames=32)
|
99 |
+
# self.clip_model.to(torch.device('cuda:{}'.format(self.opt.gpu_ids[0])) if self.opt.gpu_ids else torch.device('cpu'))
|
100 |
+
|
101 |
+
frames, _, _ = read_video(str(img_path), pts_unit='sec')
|
102 |
+
frames = frames[:self.num_frames]
|
103 |
+
frames = frames.permute(0, 3, 1, 2) # (T,H,W,C) -> (T,C,H,W)
|
104 |
+
|
105 |
+
if self.transform is not None:
|
106 |
+
video_frames = torch.cat([self.transform(TF.to_pil_image(frame)).unsqueeze(0) for frame in frames])
|
107 |
+
|
108 |
+
return video_frames, label
|
models/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .clip_models import CLIPModel
|
2 |
+
from .imagenet_models import ImagenetModel
|
3 |
+
from .transformer import FeatureTransformer
|
4 |
+
|
5 |
+
|
6 |
+
VALID_NAMES = [
|
7 |
+
'Imagenet:resnet18',
|
8 |
+
'Imagenet:resnet34',
|
9 |
+
'Imagenet:resnet50',
|
10 |
+
'Imagenet:resnet101',
|
11 |
+
'Imagenet:resnet152',
|
12 |
+
'Imagenet:vgg11',
|
13 |
+
'Imagenet:vgg19',
|
14 |
+
'Imagenet:swin-b',
|
15 |
+
'Imagenet:swin-s',
|
16 |
+
'Imagenet:swin-t',
|
17 |
+
'Imagenet:vit_b_16',
|
18 |
+
'Imagenet:vit_b_32',
|
19 |
+
'Imagenet:vit_l_16',
|
20 |
+
'Imagenet:vit_l_32',
|
21 |
+
|
22 |
+
'CLIP:RN50',
|
23 |
+
'CLIP:RN101',
|
24 |
+
'CLIP:RN50x4',
|
25 |
+
'CLIP:RN50x16',
|
26 |
+
'CLIP:RN50x64',
|
27 |
+
'CLIP:ViT-B/32',
|
28 |
+
'CLIP:ViT-B/16',
|
29 |
+
'CLIP:ViT-L/14',
|
30 |
+
'CLIP:ViT-L/14@336px',
|
31 |
+
|
32 |
+
'FeatureTransformer'
|
33 |
+
]
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def get_model(name, **kwargs):
|
40 |
+
assert name in VALID_NAMES
|
41 |
+
if name.startswith("Imagenet:"):
|
42 |
+
return ImagenetModel(name[9:])
|
43 |
+
elif name.startswith("CLIP:"):
|
44 |
+
return CLIPModel(name[5:])
|
45 |
+
elif name.startswith("FeatureTransformer"):
|
46 |
+
return FeatureTransformer(**kwargs)
|
47 |
+
else:
|
48 |
+
assert False
|
models/clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
models/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
models/clip/clip.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
from pkg_resources import packaging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from .model import build_model
|
14 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
15 |
+
|
16 |
+
try:
|
17 |
+
from torchvision.transforms import InterpolationMode
|
18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
19 |
+
except ImportError:
|
20 |
+
BICUBIC = Image.BICUBIC
|
21 |
+
|
22 |
+
|
23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
28 |
+
_tokenizer = _Tokenizer()
|
29 |
+
|
30 |
+
_MODELS = {
|
31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
39 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def _download(url: str, root: str):
|
44 |
+
os.makedirs(root, exist_ok=True)
|
45 |
+
filename = os.path.basename(url)
|
46 |
+
|
47 |
+
expected_sha256 = url.split("/")[-2]
|
48 |
+
download_target = os.path.join(root, filename)
|
49 |
+
|
50 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
51 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
52 |
+
|
53 |
+
if os.path.isfile(download_target):
|
54 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
55 |
+
return download_target
|
56 |
+
else:
|
57 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
58 |
+
|
59 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
60 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
61 |
+
while True:
|
62 |
+
buffer = source.read(8192)
|
63 |
+
if not buffer:
|
64 |
+
break
|
65 |
+
|
66 |
+
output.write(buffer)
|
67 |
+
loop.update(len(buffer))
|
68 |
+
|
69 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
70 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
71 |
+
|
72 |
+
return download_target
|
73 |
+
|
74 |
+
|
75 |
+
def _convert_image_to_rgb(image):
|
76 |
+
return image.convert("RGB")
|
77 |
+
|
78 |
+
|
79 |
+
def _transform(n_px):
|
80 |
+
return Compose([
|
81 |
+
Resize(n_px, interpolation=BICUBIC),
|
82 |
+
CenterCrop(n_px),
|
83 |
+
_convert_image_to_rgb,
|
84 |
+
ToTensor(),
|
85 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
86 |
+
])
|
87 |
+
|
88 |
+
|
89 |
+
def available_models() -> List[str]:
|
90 |
+
"""Returns the names of available CLIP models"""
|
91 |
+
return list(_MODELS.keys())
|
92 |
+
|
93 |
+
|
94 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
95 |
+
"""Load a CLIP model
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
name : str
|
100 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
101 |
+
|
102 |
+
device : Union[str, torch.device]
|
103 |
+
The device to put the loaded model
|
104 |
+
|
105 |
+
jit : bool
|
106 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
107 |
+
|
108 |
+
download_root: str
|
109 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
model : torch.nn.Module
|
114 |
+
The CLIP model
|
115 |
+
|
116 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
117 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
118 |
+
"""
|
119 |
+
if name in _MODELS:
|
120 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
121 |
+
elif os.path.isfile(name):
|
122 |
+
model_path = name
|
123 |
+
else:
|
124 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
125 |
+
|
126 |
+
with open(model_path, 'rb') as opened_file:
|
127 |
+
try:
|
128 |
+
# loading JIT archive
|
129 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
130 |
+
state_dict = None
|
131 |
+
except RuntimeError:
|
132 |
+
# loading saved state dict
|
133 |
+
if jit:
|
134 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
135 |
+
jit = False
|
136 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
137 |
+
|
138 |
+
if not jit:
|
139 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
140 |
+
if str(device) == "cpu":
|
141 |
+
model.float()
|
142 |
+
return model, _transform(model.visual.input_resolution)
|
143 |
+
|
144 |
+
# patch the device names
|
145 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
146 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
147 |
+
|
148 |
+
def patch_device(module):
|
149 |
+
try:
|
150 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
151 |
+
except RuntimeError:
|
152 |
+
graphs = []
|
153 |
+
|
154 |
+
if hasattr(module, "forward1"):
|
155 |
+
graphs.append(module.forward1.graph)
|
156 |
+
|
157 |
+
for graph in graphs:
|
158 |
+
for node in graph.findAllNodes("prim::Constant"):
|
159 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
160 |
+
node.copyAttributes(device_node)
|
161 |
+
|
162 |
+
model.apply(patch_device)
|
163 |
+
patch_device(model.encode_image)
|
164 |
+
patch_device(model.encode_text)
|
165 |
+
|
166 |
+
# patch dtype to float32 on CPU
|
167 |
+
if str(device) == "cpu":
|
168 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
169 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
170 |
+
float_node = float_input.node()
|
171 |
+
|
172 |
+
def patch_float(module):
|
173 |
+
try:
|
174 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
175 |
+
except RuntimeError:
|
176 |
+
graphs = []
|
177 |
+
|
178 |
+
if hasattr(module, "forward1"):
|
179 |
+
graphs.append(module.forward1.graph)
|
180 |
+
|
181 |
+
for graph in graphs:
|
182 |
+
for node in graph.findAllNodes("aten::to"):
|
183 |
+
inputs = list(node.inputs())
|
184 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
185 |
+
if inputs[i].node()["value"] == 5:
|
186 |
+
inputs[i].node().copyAttributes(float_node)
|
187 |
+
|
188 |
+
model.apply(patch_float)
|
189 |
+
patch_float(model.encode_image)
|
190 |
+
patch_float(model.encode_text)
|
191 |
+
|
192 |
+
model.float()
|
193 |
+
|
194 |
+
return model, _transform(model.input_resolution.item())
|
195 |
+
|
196 |
+
|
197 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
198 |
+
"""
|
199 |
+
Returns the tokenized representation of given input string(s)
|
200 |
+
|
201 |
+
Parameters
|
202 |
+
----------
|
203 |
+
texts : Union[str, List[str]]
|
204 |
+
An input string or a list of input strings to tokenize
|
205 |
+
|
206 |
+
context_length : int
|
207 |
+
The context length to use; all CLIP models use 77 as the context length
|
208 |
+
|
209 |
+
truncate: bool
|
210 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
211 |
+
|
212 |
+
Returns
|
213 |
+
-------
|
214 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
215 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
216 |
+
"""
|
217 |
+
if isinstance(texts, str):
|
218 |
+
texts = [texts]
|
219 |
+
|
220 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
221 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
222 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
223 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
224 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
225 |
+
else:
|
226 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
227 |
+
|
228 |
+
for i, tokens in enumerate(all_tokens):
|
229 |
+
if len(tokens) > context_length:
|
230 |
+
if truncate:
|
231 |
+
tokens = tokens[:context_length]
|
232 |
+
tokens[-1] = eot_token
|
233 |
+
else:
|
234 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
235 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
236 |
+
|
237 |
+
return result
|
models/clip/model.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
out = {}
|
204 |
+
for idx, layer in enumerate(self.resblocks.children()):
|
205 |
+
x = layer(x)
|
206 |
+
out['layer'+str(idx)] = x[0] # shape:LND. choose cls token feature
|
207 |
+
return out, x
|
208 |
+
|
209 |
+
# return self.resblocks(x) # This is the original code
|
210 |
+
|
211 |
+
|
212 |
+
class VisionTransformer(nn.Module):
|
213 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
214 |
+
super().__init__()
|
215 |
+
self.input_resolution = input_resolution
|
216 |
+
self.output_dim = output_dim
|
217 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
218 |
+
|
219 |
+
scale = width ** -0.5
|
220 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
221 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
222 |
+
self.ln_pre = LayerNorm(width)
|
223 |
+
|
224 |
+
self.transformer = Transformer(width, layers, heads)
|
225 |
+
|
226 |
+
self.ln_post = LayerNorm(width)
|
227 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
def forward(self, x: torch.Tensor):
|
232 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
233 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
234 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
235 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
236 |
+
x = x + self.positional_embedding.to(x.dtype)
|
237 |
+
x = self.ln_pre(x)
|
238 |
+
|
239 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
240 |
+
out, x = self.transformer(x)
|
241 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
242 |
+
|
243 |
+
x = self.ln_post(x[:, 0, :])
|
244 |
+
|
245 |
+
|
246 |
+
out['before_projection'] = x
|
247 |
+
|
248 |
+
if self.proj is not None:
|
249 |
+
x = x @ self.proj
|
250 |
+
out['after_projection'] = x
|
251 |
+
|
252 |
+
# Return both intermediate features and final clip feature
|
253 |
+
# return out
|
254 |
+
|
255 |
+
# This only returns CLIP features
|
256 |
+
return x
|
257 |
+
|
258 |
+
|
259 |
+
class CLIP(nn.Module):
|
260 |
+
def __init__(self,
|
261 |
+
embed_dim: int,
|
262 |
+
# vision
|
263 |
+
image_resolution: int,
|
264 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
265 |
+
vision_width: int,
|
266 |
+
vision_patch_size: int,
|
267 |
+
# text
|
268 |
+
context_length: int,
|
269 |
+
vocab_size: int,
|
270 |
+
transformer_width: int,
|
271 |
+
transformer_heads: int,
|
272 |
+
transformer_layers: int
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.context_length = context_length
|
277 |
+
|
278 |
+
if isinstance(vision_layers, (tuple, list)):
|
279 |
+
vision_heads = vision_width * 32 // 64
|
280 |
+
self.visual = ModifiedResNet(
|
281 |
+
layers=vision_layers,
|
282 |
+
output_dim=embed_dim,
|
283 |
+
heads=vision_heads,
|
284 |
+
input_resolution=image_resolution,
|
285 |
+
width=vision_width
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
vision_heads = vision_width // 64
|
289 |
+
self.visual = VisionTransformer(
|
290 |
+
input_resolution=image_resolution,
|
291 |
+
patch_size=vision_patch_size,
|
292 |
+
width=vision_width,
|
293 |
+
layers=vision_layers,
|
294 |
+
heads=vision_heads,
|
295 |
+
output_dim=embed_dim
|
296 |
+
)
|
297 |
+
|
298 |
+
self.transformer = Transformer(
|
299 |
+
width=transformer_width,
|
300 |
+
layers=transformer_layers,
|
301 |
+
heads=transformer_heads,
|
302 |
+
attn_mask=self.build_attention_mask()
|
303 |
+
)
|
304 |
+
|
305 |
+
self.vocab_size = vocab_size
|
306 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
307 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
308 |
+
self.ln_final = LayerNorm(transformer_width)
|
309 |
+
|
310 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
311 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
312 |
+
|
313 |
+
self.initialize_parameters()
|
314 |
+
|
315 |
+
def initialize_parameters(self):
|
316 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
317 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
318 |
+
|
319 |
+
if isinstance(self.visual, ModifiedResNet):
|
320 |
+
if self.visual.attnpool is not None:
|
321 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
322 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
323 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
324 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
325 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
326 |
+
|
327 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
328 |
+
for name, param in resnet_block.named_parameters():
|
329 |
+
if name.endswith("bn3.weight"):
|
330 |
+
nn.init.zeros_(param)
|
331 |
+
|
332 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
333 |
+
attn_std = self.transformer.width ** -0.5
|
334 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
335 |
+
for block in self.transformer.resblocks:
|
336 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
337 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
338 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
339 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
340 |
+
|
341 |
+
if self.text_projection is not None:
|
342 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
343 |
+
|
344 |
+
def build_attention_mask(self):
|
345 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
346 |
+
# pytorch uses additive attention mask; fill with -inf
|
347 |
+
mask = torch.empty(self.context_length, self.context_length)
|
348 |
+
mask.fill_(float("-inf"))
|
349 |
+
mask.triu_(1) # zero out the lower diagonal
|
350 |
+
return mask
|
351 |
+
|
352 |
+
@property
|
353 |
+
def dtype(self):
|
354 |
+
return self.visual.conv1.weight.dtype
|
355 |
+
|
356 |
+
def encode_image(self, image):
|
357 |
+
return self.visual(image.type(self.dtype))
|
358 |
+
|
359 |
+
def encode_text(self, text):
|
360 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
361 |
+
|
362 |
+
x = x + self.positional_embedding.type(self.dtype)
|
363 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
364 |
+
x = self.transformer(x)
|
365 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
366 |
+
x = self.ln_final(x).type(self.dtype)
|
367 |
+
|
368 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
369 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
370 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
371 |
+
|
372 |
+
return x
|
373 |
+
|
374 |
+
def forward(self, image, text):
|
375 |
+
image_features = self.encode_image(image)
|
376 |
+
text_features = self.encode_text(text)
|
377 |
+
|
378 |
+
# normalized features
|
379 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
380 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
381 |
+
|
382 |
+
# cosine similarity as logits
|
383 |
+
logit_scale = self.logit_scale.exp()
|
384 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
385 |
+
logits_per_text = logits_per_image.t()
|
386 |
+
|
387 |
+
# shape = [global_batch_size, global_batch_size]
|
388 |
+
return logits_per_image, logits_per_text
|
389 |
+
|
390 |
+
|
391 |
+
def convert_weights(model: nn.Module):
|
392 |
+
"""Convert applicable model parameters to fp16"""
|
393 |
+
|
394 |
+
def _convert_weights_to_fp16(l):
|
395 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
396 |
+
l.weight.data = l.weight.data.half()
|
397 |
+
if l.bias is not None:
|
398 |
+
l.bias.data = l.bias.data.half()
|
399 |
+
|
400 |
+
if isinstance(l, nn.MultiheadAttention):
|
401 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
402 |
+
tensor = getattr(l, attr)
|
403 |
+
if tensor is not None:
|
404 |
+
tensor.data = tensor.data.half()
|
405 |
+
|
406 |
+
for name in ["text_projection", "proj"]:
|
407 |
+
if hasattr(l, name):
|
408 |
+
attr = getattr(l, name)
|
409 |
+
if attr is not None:
|
410 |
+
attr.data = attr.data.half()
|
411 |
+
|
412 |
+
model.apply(_convert_weights_to_fp16)
|
413 |
+
|
414 |
+
|
415 |
+
def build_model(state_dict: dict):
|
416 |
+
vit = "visual.proj" in state_dict
|
417 |
+
|
418 |
+
if vit:
|
419 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
420 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
421 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
422 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
423 |
+
image_resolution = vision_patch_size * grid_size
|
424 |
+
else:
|
425 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
426 |
+
vision_layers = tuple(counts)
|
427 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
428 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
429 |
+
vision_patch_size = None
|
430 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
431 |
+
image_resolution = output_width * 32
|
432 |
+
|
433 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
434 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
435 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
436 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
437 |
+
transformer_heads = transformer_width // 64
|
438 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
439 |
+
|
440 |
+
model = CLIP(
|
441 |
+
embed_dim,
|
442 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
443 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
444 |
+
)
|
445 |
+
|
446 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
447 |
+
if key in state_dict:
|
448 |
+
del state_dict[key]
|
449 |
+
|
450 |
+
convert_weights(model)
|
451 |
+
model.load_state_dict(state_dict)
|
452 |
+
return model.eval()
|
models/clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
models/clip_models.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .clip import clip
|
2 |
+
from PIL import Image
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
CHANNELS = {
|
7 |
+
"RN50" : 1024,
|
8 |
+
"ViT-L/14" : 768
|
9 |
+
}
|
10 |
+
|
11 |
+
class CLIPModel(nn.Module):
|
12 |
+
def __init__(self, name, num_classes=1):
|
13 |
+
super(CLIPModel, self).__init__()
|
14 |
+
|
15 |
+
self.model, self.preprocess = clip.load(name, device="cpu") # self.preprocess will not be used during training, which is handled in Dataset class
|
16 |
+
self.fc = nn.Linear( CHANNELS[name], num_classes )
|
17 |
+
|
18 |
+
|
19 |
+
def forward(self, x, return_feature=False):
|
20 |
+
features = self.model.encode_image(x)
|
21 |
+
if return_feature:
|
22 |
+
return features
|
23 |
+
return self.fc(features)
|
24 |
+
|
models/imagenet_models.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .resnet import resnet18, resnet34, resnet50, resnet101, resnet152
|
2 |
+
from .vision_transformer import vit_b_16, vit_b_32, vit_l_16, vit_l_32
|
3 |
+
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
model_dict = {
|
11 |
+
'resnet18': resnet18,
|
12 |
+
'resnet34': resnet34,
|
13 |
+
'resnet50': resnet50,
|
14 |
+
'resnet101': resnet101,
|
15 |
+
'resnet152': resnet152,
|
16 |
+
'vit_b_16': vit_b_16,
|
17 |
+
'vit_b_32': vit_b_32,
|
18 |
+
'vit_l_16': vit_l_16,
|
19 |
+
'vit_l_32': vit_l_32
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
CHANNELS = {
|
24 |
+
"resnet50" : 2048,
|
25 |
+
"vit_b_16" : 768,
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
class ImagenetModel(nn.Module):
|
31 |
+
def __init__(self, name, num_classes=1):
|
32 |
+
super(ImagenetModel, self).__init__()
|
33 |
+
|
34 |
+
self.model = model_dict[name](pretrained=True)
|
35 |
+
self.fc = nn.Linear(CHANNELS[name], num_classes) #manually define a fc layer here
|
36 |
+
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
feature = self.model(x)["penultimate"]
|
40 |
+
return self.fc(feature)
|
models/resnet.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Type, Any, Callable, Union, List, Optional
|
5 |
+
|
6 |
+
try:
|
7 |
+
from torch.hub import load_state_dict_from_url
|
8 |
+
except ImportError:
|
9 |
+
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
10 |
+
|
11 |
+
|
12 |
+
model_urls = {
|
13 |
+
'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth',
|
14 |
+
'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth',
|
15 |
+
'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth',
|
16 |
+
'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth',
|
17 |
+
'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth',
|
18 |
+
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
|
19 |
+
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
|
20 |
+
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
|
21 |
+
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
28 |
+
"""3x3 convolution with padding"""
|
29 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
30 |
+
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
31 |
+
|
32 |
+
|
33 |
+
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
34 |
+
"""1x1 convolution"""
|
35 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
36 |
+
|
37 |
+
|
38 |
+
class BasicBlock(nn.Module):
|
39 |
+
expansion: int = 1
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
inplanes: int,
|
44 |
+
planes: int,
|
45 |
+
stride: int = 1,
|
46 |
+
downsample: Optional[nn.Module] = None,
|
47 |
+
groups: int = 1,
|
48 |
+
base_width: int = 64,
|
49 |
+
dilation: int = 1,
|
50 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None
|
51 |
+
) -> None:
|
52 |
+
super(BasicBlock, self).__init__()
|
53 |
+
if norm_layer is None:
|
54 |
+
norm_layer = nn.BatchNorm2d
|
55 |
+
if groups != 1 or base_width != 64:
|
56 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
57 |
+
if dilation > 1:
|
58 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
59 |
+
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
60 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
61 |
+
self.bn1 = norm_layer(planes)
|
62 |
+
self.relu = nn.ReLU(inplace=True)
|
63 |
+
self.conv2 = conv3x3(planes, planes)
|
64 |
+
self.bn2 = norm_layer(planes)
|
65 |
+
self.downsample = downsample
|
66 |
+
self.stride = stride
|
67 |
+
|
68 |
+
def forward(self, x: Tensor) -> Tensor:
|
69 |
+
identity = x
|
70 |
+
|
71 |
+
out = self.conv1(x)
|
72 |
+
out = self.bn1(out)
|
73 |
+
out = self.relu(out)
|
74 |
+
|
75 |
+
out = self.conv2(out)
|
76 |
+
out = self.bn2(out)
|
77 |
+
|
78 |
+
if self.downsample is not None:
|
79 |
+
identity = self.downsample(x)
|
80 |
+
|
81 |
+
out += identity
|
82 |
+
out = self.relu(out)
|
83 |
+
|
84 |
+
return out
|
85 |
+
|
86 |
+
|
87 |
+
class Bottleneck(nn.Module):
|
88 |
+
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
89 |
+
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
90 |
+
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
91 |
+
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
92 |
+
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
93 |
+
|
94 |
+
expansion: int = 4
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
inplanes: int,
|
99 |
+
planes: int,
|
100 |
+
stride: int = 1,
|
101 |
+
downsample: Optional[nn.Module] = None,
|
102 |
+
groups: int = 1,
|
103 |
+
base_width: int = 64,
|
104 |
+
dilation: int = 1,
|
105 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None
|
106 |
+
) -> None:
|
107 |
+
super(Bottleneck, self).__init__()
|
108 |
+
if norm_layer is None:
|
109 |
+
norm_layer = nn.BatchNorm2d
|
110 |
+
width = int(planes * (base_width / 64.)) * groups
|
111 |
+
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
112 |
+
self.conv1 = conv1x1(inplanes, width)
|
113 |
+
self.bn1 = norm_layer(width)
|
114 |
+
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
115 |
+
self.bn2 = norm_layer(width)
|
116 |
+
self.conv3 = conv1x1(width, planes * self.expansion)
|
117 |
+
self.bn3 = norm_layer(planes * self.expansion)
|
118 |
+
self.relu = nn.ReLU(inplace=True)
|
119 |
+
self.downsample = downsample
|
120 |
+
self.stride = stride
|
121 |
+
|
122 |
+
def forward(self, x: Tensor) -> Tensor:
|
123 |
+
identity = x
|
124 |
+
|
125 |
+
out = self.conv1(x)
|
126 |
+
out = self.bn1(out)
|
127 |
+
out = self.relu(out)
|
128 |
+
|
129 |
+
out = self.conv2(out)
|
130 |
+
out = self.bn2(out)
|
131 |
+
out = self.relu(out)
|
132 |
+
|
133 |
+
out = self.conv3(out)
|
134 |
+
out = self.bn3(out)
|
135 |
+
|
136 |
+
if self.downsample is not None:
|
137 |
+
identity = self.downsample(x)
|
138 |
+
|
139 |
+
out += identity
|
140 |
+
out = self.relu(out)
|
141 |
+
|
142 |
+
return out
|
143 |
+
|
144 |
+
|
145 |
+
class ResNet(nn.Module):
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
150 |
+
layers: List[int],
|
151 |
+
num_classes: int = 1000,
|
152 |
+
zero_init_residual: bool = False,
|
153 |
+
groups: int = 1,
|
154 |
+
width_per_group: int = 64,
|
155 |
+
replace_stride_with_dilation: Optional[List[bool]] = None,
|
156 |
+
norm_layer: Optional[Callable[..., nn.Module]] = None
|
157 |
+
) -> None:
|
158 |
+
super(ResNet, self).__init__()
|
159 |
+
if norm_layer is None:
|
160 |
+
norm_layer = nn.BatchNorm2d
|
161 |
+
self._norm_layer = norm_layer
|
162 |
+
|
163 |
+
self.inplanes = 64
|
164 |
+
self.dilation = 1
|
165 |
+
if replace_stride_with_dilation is None:
|
166 |
+
# each element in the tuple indicates if we should replace
|
167 |
+
# the 2x2 stride with a dilated convolution instead
|
168 |
+
replace_stride_with_dilation = [False, False, False]
|
169 |
+
if len(replace_stride_with_dilation) != 3:
|
170 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
171 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
172 |
+
self.groups = groups
|
173 |
+
self.base_width = width_per_group
|
174 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
|
175 |
+
bias=False)
|
176 |
+
self.bn1 = norm_layer(self.inplanes)
|
177 |
+
self.relu = nn.ReLU(inplace=True)
|
178 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
179 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
180 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
|
181 |
+
dilate=replace_stride_with_dilation[0])
|
182 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
183 |
+
dilate=replace_stride_with_dilation[1])
|
184 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
|
185 |
+
dilate=replace_stride_with_dilation[2])
|
186 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
187 |
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
188 |
+
|
189 |
+
for m in self.modules():
|
190 |
+
if isinstance(m, nn.Conv2d):
|
191 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
192 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
193 |
+
nn.init.constant_(m.weight, 1)
|
194 |
+
nn.init.constant_(m.bias, 0)
|
195 |
+
|
196 |
+
# Zero-initialize the last BN in each residual branch,
|
197 |
+
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
198 |
+
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
199 |
+
if zero_init_residual:
|
200 |
+
for m in self.modules():
|
201 |
+
if isinstance(m, Bottleneck):
|
202 |
+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
|
203 |
+
elif isinstance(m, BasicBlock):
|
204 |
+
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
|
205 |
+
|
206 |
+
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
|
207 |
+
stride: int = 1, dilate: bool = False) -> nn.Sequential:
|
208 |
+
norm_layer = self._norm_layer
|
209 |
+
downsample = None
|
210 |
+
previous_dilation = self.dilation
|
211 |
+
if dilate:
|
212 |
+
self.dilation *= stride
|
213 |
+
stride = 1
|
214 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
215 |
+
downsample = nn.Sequential(
|
216 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
217 |
+
norm_layer(planes * block.expansion),
|
218 |
+
)
|
219 |
+
|
220 |
+
layers = []
|
221 |
+
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
|
222 |
+
self.base_width, previous_dilation, norm_layer))
|
223 |
+
self.inplanes = planes * block.expansion
|
224 |
+
for _ in range(1, blocks):
|
225 |
+
layers.append(block(self.inplanes, planes, groups=self.groups,
|
226 |
+
base_width=self.base_width, dilation=self.dilation,
|
227 |
+
norm_layer=norm_layer))
|
228 |
+
|
229 |
+
return nn.Sequential(*layers)
|
230 |
+
|
231 |
+
def _forward_impl(self, x):
|
232 |
+
# The comment resolution is based on input size is 224*224 imagenet
|
233 |
+
out = {}
|
234 |
+
x = self.conv1(x)
|
235 |
+
x = self.bn1(x)
|
236 |
+
x = self.relu(x)
|
237 |
+
x = self.maxpool(x)
|
238 |
+
out['f0'] = x # N*64*56*56
|
239 |
+
|
240 |
+
x = self.layer1(x)
|
241 |
+
out['f1'] = x # N*64*56*56
|
242 |
+
|
243 |
+
x = self.layer2(x)
|
244 |
+
out['f2'] = x # N*128*28*28
|
245 |
+
|
246 |
+
x = self.layer3(x)
|
247 |
+
out['f3'] = x # N*256*14*14
|
248 |
+
|
249 |
+
x = self.layer4(x)
|
250 |
+
out['f4'] = x # N*512*7*7
|
251 |
+
|
252 |
+
x = self.avgpool(x)
|
253 |
+
x = torch.flatten(x, 1)
|
254 |
+
out['penultimate'] = x # N*512
|
255 |
+
|
256 |
+
x = self.fc(x)
|
257 |
+
out['logits'] = x # N*1000
|
258 |
+
|
259 |
+
# return all features
|
260 |
+
return out
|
261 |
+
|
262 |
+
# return final classification result
|
263 |
+
# return x
|
264 |
+
|
265 |
+
def forward(self, x):
|
266 |
+
return self._forward_impl(x)
|
267 |
+
|
268 |
+
|
269 |
+
def _resnet(
|
270 |
+
arch: str,
|
271 |
+
block: Type[Union[BasicBlock, Bottleneck]],
|
272 |
+
layers: List[int],
|
273 |
+
pretrained: bool,
|
274 |
+
progress: bool,
|
275 |
+
**kwargs: Any
|
276 |
+
) -> ResNet:
|
277 |
+
model = ResNet(block, layers, **kwargs)
|
278 |
+
if pretrained:
|
279 |
+
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
|
280 |
+
model.load_state_dict(state_dict)
|
281 |
+
return model
|
282 |
+
|
283 |
+
|
284 |
+
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
285 |
+
r"""ResNet-18 model from
|
286 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
290 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
291 |
+
"""
|
292 |
+
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
|
293 |
+
|
294 |
+
|
295 |
+
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
296 |
+
r"""ResNet-34 model from
|
297 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
301 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
302 |
+
"""
|
303 |
+
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
304 |
+
|
305 |
+
|
306 |
+
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
307 |
+
r"""ResNet-50 model from
|
308 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
312 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
313 |
+
"""
|
314 |
+
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
|
315 |
+
|
316 |
+
|
317 |
+
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
318 |
+
r"""ResNet-101 model from
|
319 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
323 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
324 |
+
"""
|
325 |
+
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
|
326 |
+
|
327 |
+
|
328 |
+
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
329 |
+
r"""ResNet-152 model from
|
330 |
+
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
331 |
+
|
332 |
+
Args:
|
333 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
334 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
335 |
+
"""
|
336 |
+
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
|
337 |
+
|
models/transformer.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import OrderedDict
|
3 |
+
from functools import partial
|
4 |
+
from typing import Any, Callable, List, NamedTuple, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
try:
|
10 |
+
from torch.hub import load_state_dict_from_url
|
11 |
+
except ImportError:
|
12 |
+
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
13 |
+
|
14 |
+
|
15 |
+
model_urls = {
|
16 |
+
"vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth",
|
17 |
+
"vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
|
18 |
+
"vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
|
19 |
+
"vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
class MLPBlock(nn.Sequential):
|
24 |
+
"""Transformer MLP block."""
|
25 |
+
|
26 |
+
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
|
27 |
+
super().__init__()
|
28 |
+
self.linear_1 = nn.Linear(in_dim, mlp_dim)
|
29 |
+
self.act = nn.GELU()
|
30 |
+
self.dropout_1 = nn.Dropout(dropout)
|
31 |
+
self.linear_2 = nn.Linear(mlp_dim, in_dim)
|
32 |
+
self.dropout_2 = nn.Dropout(dropout)
|
33 |
+
|
34 |
+
nn.init.xavier_uniform_(self.linear_1.weight)
|
35 |
+
nn.init.xavier_uniform_(self.linear_2.weight)
|
36 |
+
nn.init.normal_(self.linear_1.bias, std=1e-6)
|
37 |
+
nn.init.normal_(self.linear_2.bias, std=1e-6)
|
38 |
+
|
39 |
+
|
40 |
+
class EncoderBlock(nn.Module):
|
41 |
+
"""Transformer encoder block."""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
num_heads: int,
|
46 |
+
hidden_dim: int,
|
47 |
+
mlp_dim: int,
|
48 |
+
dropout: float,
|
49 |
+
attention_dropout: float,
|
50 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
self.num_heads = num_heads
|
54 |
+
|
55 |
+
# Attention block
|
56 |
+
self.ln_1 = norm_layer(hidden_dim)
|
57 |
+
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
|
58 |
+
self.dropout = nn.Dropout(dropout)
|
59 |
+
|
60 |
+
# MLP block
|
61 |
+
self.ln_2 = norm_layer(hidden_dim)
|
62 |
+
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
|
63 |
+
|
64 |
+
def forward(self, input: torch.Tensor):
|
65 |
+
torch._assert(input.dim() == 3, f"Expected (seq_length, batch_size, hidden_dim) got {input.shape}")
|
66 |
+
x = self.ln_1(input)
|
67 |
+
x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
|
68 |
+
x = self.dropout(x)
|
69 |
+
x = x + input
|
70 |
+
|
71 |
+
y = self.ln_2(x)
|
72 |
+
y = self.mlp(y)
|
73 |
+
return x + y
|
74 |
+
|
75 |
+
|
76 |
+
class Encoder(nn.Module):
|
77 |
+
"""Transformer Model Encoder for sequence to sequence translation."""
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
seq_length: int,
|
82 |
+
num_layers: int,
|
83 |
+
num_heads: int,
|
84 |
+
hidden_dim: int,
|
85 |
+
mlp_dim: int,
|
86 |
+
dropout: float,
|
87 |
+
attention_dropout: float,
|
88 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
# Note that batch_size is on the first dim because
|
92 |
+
# we have batch_first=True in nn.MultiAttention() by default
|
93 |
+
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
|
94 |
+
self.dropout = nn.Dropout(dropout)
|
95 |
+
layers: OrderedDict[str, nn.Module] = OrderedDict()
|
96 |
+
for i in range(num_layers):
|
97 |
+
layers[f"encoder_layer_{i}"] = EncoderBlock(
|
98 |
+
num_heads,
|
99 |
+
hidden_dim,
|
100 |
+
mlp_dim,
|
101 |
+
dropout,
|
102 |
+
attention_dropout,
|
103 |
+
norm_layer,
|
104 |
+
)
|
105 |
+
self.layers = nn.Sequential(layers)
|
106 |
+
self.ln = norm_layer(hidden_dim)
|
107 |
+
|
108 |
+
def forward(self, input: torch.Tensor):
|
109 |
+
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
|
110 |
+
input = input + self.pos_embedding
|
111 |
+
return self.ln(self.layers(self.dropout(input)))
|
112 |
+
|
113 |
+
|
114 |
+
class FeatureTransformer(nn.Module):
|
115 |
+
"""
|
116 |
+
Feaure Transformer
|
117 |
+
"""
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
seq_length: int = 16,
|
121 |
+
num_layers: int = 2,
|
122 |
+
num_heads: int = 4,
|
123 |
+
hidden_dim: int = 768,
|
124 |
+
mlp_dim: int = 768,
|
125 |
+
dropout: float = 0.0,
|
126 |
+
attention_dropout: float = 0.0,
|
127 |
+
num_classes: int = 1,
|
128 |
+
representation_size: Optional[int] = None,
|
129 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
130 |
+
) -> None:
|
131 |
+
super().__init__()
|
132 |
+
# _log_api_usage_once(self)
|
133 |
+
self.hidden_dim = hidden_dim
|
134 |
+
self.mlp_dim = mlp_dim
|
135 |
+
self.attention_dropout = attention_dropout
|
136 |
+
self.dropout = dropout
|
137 |
+
self.num_classes = num_classes
|
138 |
+
self.representation_size = representation_size
|
139 |
+
self.norm_layer = norm_layer
|
140 |
+
|
141 |
+
# Add a class token
|
142 |
+
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
|
143 |
+
seq_length += 1
|
144 |
+
|
145 |
+
self.encoder = Encoder(
|
146 |
+
seq_length,
|
147 |
+
num_layers,
|
148 |
+
num_heads,
|
149 |
+
hidden_dim,
|
150 |
+
mlp_dim,
|
151 |
+
dropout,
|
152 |
+
attention_dropout,
|
153 |
+
norm_layer,
|
154 |
+
)
|
155 |
+
self.seq_length = seq_length
|
156 |
+
|
157 |
+
heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
|
158 |
+
if representation_size is None:
|
159 |
+
heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
|
160 |
+
else:
|
161 |
+
heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
|
162 |
+
heads_layers["act"] = nn.Tanh()
|
163 |
+
heads_layers["head"] = nn.Linear(representation_size, num_classes)
|
164 |
+
|
165 |
+
self.heads = nn.Sequential(heads_layers)
|
166 |
+
|
167 |
+
if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
|
168 |
+
fan_in = self.heads.pre_logits.in_features
|
169 |
+
nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
|
170 |
+
nn.init.zeros_(self.heads.pre_logits.bias)
|
171 |
+
|
172 |
+
if isinstance(self.heads.head, nn.Linear):
|
173 |
+
nn.init.zeros_(self.heads.head.weight)
|
174 |
+
nn.init.zeros_(self.heads.head.bias)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor):
|
177 |
+
# Expand the class token to the full batch
|
178 |
+
batch_class_token = self.class_token.expand(x.shape[0], -1, -1)
|
179 |
+
x = torch.cat([batch_class_token, x], dim=1)
|
180 |
+
|
181 |
+
x = self.encoder(x)
|
182 |
+
|
183 |
+
# Classifier "token" as used by standard language architectures
|
184 |
+
x = x[:, 0]
|
185 |
+
x = self.heads(x)
|
186 |
+
|
187 |
+
return x
|
models/vgg.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from typing import Union, List, Dict, Any, cast
|
4 |
+
import torchvision
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
class VGG(torch.nn.Module):
|
12 |
+
def __init__(self, arch_type, pretrained, progress):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.layer1 = torch.nn.Sequential()
|
16 |
+
self.layer2 = torch.nn.Sequential()
|
17 |
+
self.layer3 = torch.nn.Sequential()
|
18 |
+
self.layer4 = torch.nn.Sequential()
|
19 |
+
self.layer5 = torch.nn.Sequential()
|
20 |
+
|
21 |
+
if arch_type == 'vgg11':
|
22 |
+
official_vgg = torchvision.models.vgg11(pretrained=pretrained, progress=progress)
|
23 |
+
blocks = [ [0,2], [2,5], [5,10], [10,15], [15,20] ]
|
24 |
+
last_idx = 20
|
25 |
+
elif arch_type == 'vgg19':
|
26 |
+
official_vgg = torchvision.models.vgg19(pretrained=pretrained, progress=progress)
|
27 |
+
blocks = [ [0,4], [4,9], [9,18], [18,27], [27,36] ]
|
28 |
+
last_idx = 36
|
29 |
+
else:
|
30 |
+
raise NotImplementedError
|
31 |
+
|
32 |
+
|
33 |
+
for x in range( *blocks[0] ):
|
34 |
+
self.layer1.add_module(str(x), official_vgg.features[x])
|
35 |
+
for x in range( *blocks[1] ):
|
36 |
+
self.layer2.add_module(str(x), official_vgg.features[x])
|
37 |
+
for x in range( *blocks[2] ):
|
38 |
+
self.layer3.add_module(str(x), official_vgg.features[x])
|
39 |
+
for x in range( *blocks[3] ):
|
40 |
+
self.layer4.add_module(str(x), official_vgg.features[x])
|
41 |
+
for x in range( *blocks[4] ):
|
42 |
+
self.layer5.add_module(str(x), official_vgg.features[x])
|
43 |
+
|
44 |
+
self.max_pool = official_vgg.features[last_idx]
|
45 |
+
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
|
46 |
+
|
47 |
+
self.fc1 = official_vgg.classifier[0]
|
48 |
+
self.fc2 = official_vgg.classifier[3]
|
49 |
+
self.fc3 = official_vgg.classifier[6]
|
50 |
+
self.dropout = nn.Dropout()
|
51 |
+
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
out = {}
|
55 |
+
|
56 |
+
x = self.layer1(x)
|
57 |
+
out['f0'] = x
|
58 |
+
|
59 |
+
x = self.layer2(x)
|
60 |
+
out['f1'] = x
|
61 |
+
|
62 |
+
x = self.layer3(x)
|
63 |
+
out['f2'] = x
|
64 |
+
|
65 |
+
x = self.layer4(x)
|
66 |
+
out['f3'] = x
|
67 |
+
|
68 |
+
x = self.layer5(x)
|
69 |
+
out['f4'] = x
|
70 |
+
|
71 |
+
x = self.max_pool(x)
|
72 |
+
x = self.avgpool(x)
|
73 |
+
x = x.view(-1,512*7*7)
|
74 |
+
|
75 |
+
x = self.fc1(x)
|
76 |
+
x = F.relu(x)
|
77 |
+
x = self.dropout(x)
|
78 |
+
x = self.fc2(x)
|
79 |
+
x = F.relu(x)
|
80 |
+
out['penultimate'] = x
|
81 |
+
x = self.dropout(x)
|
82 |
+
x = self.fc3(x)
|
83 |
+
out['logits'] = x
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
def vgg11(pretrained=False, progress=True):
|
97 |
+
r"""VGG 11-layer model (configuration "A") from
|
98 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
102 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
103 |
+
"""
|
104 |
+
return VGG('vgg11', pretrained, progress)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
def vgg19(pretrained=False, progress=True):
|
109 |
+
r"""VGG 19-layer model (configuration "E")
|
110 |
+
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
114 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
115 |
+
"""
|
116 |
+
return VGG('vgg19', pretrained, progress)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
models/vision_transformer.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from collections import OrderedDict
|
3 |
+
from functools import partial
|
4 |
+
from typing import Any, Callable, List, NamedTuple, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
# from .._internally_replaced_utils import load_state_dict_from_url
|
10 |
+
from .vision_transformer_misc import ConvNormActivation
|
11 |
+
from .vision_transformer_utils import _log_api_usage_once
|
12 |
+
|
13 |
+
try:
|
14 |
+
from torch.hub import load_state_dict_from_url
|
15 |
+
except ImportError:
|
16 |
+
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
17 |
+
|
18 |
+
# __all__ = [
|
19 |
+
# "VisionTransformer",
|
20 |
+
# "vit_b_16",
|
21 |
+
# "vit_b_32",
|
22 |
+
# "vit_l_16",
|
23 |
+
# "vit_l_32",
|
24 |
+
# ]
|
25 |
+
|
26 |
+
model_urls = {
|
27 |
+
"vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth",
|
28 |
+
"vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth",
|
29 |
+
"vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth",
|
30 |
+
"vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth",
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class ConvStemConfig(NamedTuple):
|
35 |
+
out_channels: int
|
36 |
+
kernel_size: int
|
37 |
+
stride: int
|
38 |
+
norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d
|
39 |
+
activation_layer: Callable[..., nn.Module] = nn.ReLU
|
40 |
+
|
41 |
+
|
42 |
+
class MLPBlock(nn.Sequential):
|
43 |
+
"""Transformer MLP block."""
|
44 |
+
|
45 |
+
def __init__(self, in_dim: int, mlp_dim: int, dropout: float):
|
46 |
+
super().__init__()
|
47 |
+
self.linear_1 = nn.Linear(in_dim, mlp_dim)
|
48 |
+
self.act = nn.GELU()
|
49 |
+
self.dropout_1 = nn.Dropout(dropout)
|
50 |
+
self.linear_2 = nn.Linear(mlp_dim, in_dim)
|
51 |
+
self.dropout_2 = nn.Dropout(dropout)
|
52 |
+
|
53 |
+
nn.init.xavier_uniform_(self.linear_1.weight)
|
54 |
+
nn.init.xavier_uniform_(self.linear_2.weight)
|
55 |
+
nn.init.normal_(self.linear_1.bias, std=1e-6)
|
56 |
+
nn.init.normal_(self.linear_2.bias, std=1e-6)
|
57 |
+
|
58 |
+
|
59 |
+
class EncoderBlock(nn.Module):
|
60 |
+
"""Transformer encoder block."""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
num_heads: int,
|
65 |
+
hidden_dim: int,
|
66 |
+
mlp_dim: int,
|
67 |
+
dropout: float,
|
68 |
+
attention_dropout: float,
|
69 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
self.num_heads = num_heads
|
73 |
+
|
74 |
+
# Attention block
|
75 |
+
self.ln_1 = norm_layer(hidden_dim)
|
76 |
+
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True)
|
77 |
+
self.dropout = nn.Dropout(dropout)
|
78 |
+
|
79 |
+
# MLP block
|
80 |
+
self.ln_2 = norm_layer(hidden_dim)
|
81 |
+
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout)
|
82 |
+
|
83 |
+
def forward(self, input: torch.Tensor):
|
84 |
+
torch._assert(input.dim() == 3, f"Expected (seq_length, batch_size, hidden_dim) got {input.shape}")
|
85 |
+
x = self.ln_1(input)
|
86 |
+
x, _ = self.self_attention(query=x, key=x, value=x, need_weights=False)
|
87 |
+
x = self.dropout(x)
|
88 |
+
x = x + input
|
89 |
+
|
90 |
+
y = self.ln_2(x)
|
91 |
+
y = self.mlp(y)
|
92 |
+
return x + y
|
93 |
+
|
94 |
+
|
95 |
+
class Encoder(nn.Module):
|
96 |
+
"""Transformer Model Encoder for sequence to sequence translation."""
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
seq_length: int,
|
101 |
+
num_layers: int,
|
102 |
+
num_heads: int,
|
103 |
+
hidden_dim: int,
|
104 |
+
mlp_dim: int,
|
105 |
+
dropout: float,
|
106 |
+
attention_dropout: float,
|
107 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
108 |
+
):
|
109 |
+
super().__init__()
|
110 |
+
# Note that batch_size is on the first dim because
|
111 |
+
# we have batch_first=True in nn.MultiAttention() by default
|
112 |
+
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT
|
113 |
+
self.dropout = nn.Dropout(dropout)
|
114 |
+
layers: OrderedDict[str, nn.Module] = OrderedDict()
|
115 |
+
for i in range(num_layers):
|
116 |
+
layers[f"encoder_layer_{i}"] = EncoderBlock(
|
117 |
+
num_heads,
|
118 |
+
hidden_dim,
|
119 |
+
mlp_dim,
|
120 |
+
dropout,
|
121 |
+
attention_dropout,
|
122 |
+
norm_layer,
|
123 |
+
)
|
124 |
+
self.layers = nn.Sequential(layers)
|
125 |
+
self.ln = norm_layer(hidden_dim)
|
126 |
+
|
127 |
+
def forward(self, input: torch.Tensor):
|
128 |
+
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}")
|
129 |
+
input = input + self.pos_embedding
|
130 |
+
return self.ln(self.layers(self.dropout(input)))
|
131 |
+
|
132 |
+
|
133 |
+
class VisionTransformer(nn.Module):
|
134 |
+
"""Vision Transformer as per https://arxiv.org/abs/2010.11929."""
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
image_size: int,
|
139 |
+
patch_size: int,
|
140 |
+
num_layers: int,
|
141 |
+
num_heads: int,
|
142 |
+
hidden_dim: int,
|
143 |
+
mlp_dim: int,
|
144 |
+
dropout: float = 0.0,
|
145 |
+
attention_dropout: float = 0.0,
|
146 |
+
num_classes: int = 1000,
|
147 |
+
representation_size: Optional[int] = None,
|
148 |
+
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
149 |
+
conv_stem_configs: Optional[List[ConvStemConfig]] = None,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
_log_api_usage_once(self)
|
153 |
+
torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")
|
154 |
+
self.image_size = image_size
|
155 |
+
self.patch_size = patch_size
|
156 |
+
self.hidden_dim = hidden_dim
|
157 |
+
self.mlp_dim = mlp_dim
|
158 |
+
self.attention_dropout = attention_dropout
|
159 |
+
self.dropout = dropout
|
160 |
+
self.num_classes = num_classes
|
161 |
+
self.representation_size = representation_size
|
162 |
+
self.norm_layer = norm_layer
|
163 |
+
|
164 |
+
if conv_stem_configs is not None:
|
165 |
+
# As per https://arxiv.org/abs/2106.14881
|
166 |
+
seq_proj = nn.Sequential()
|
167 |
+
prev_channels = 3
|
168 |
+
for i, conv_stem_layer_config in enumerate(conv_stem_configs):
|
169 |
+
seq_proj.add_module(
|
170 |
+
f"conv_bn_relu_{i}",
|
171 |
+
ConvNormActivation(
|
172 |
+
in_channels=prev_channels,
|
173 |
+
out_channels=conv_stem_layer_config.out_channels,
|
174 |
+
kernel_size=conv_stem_layer_config.kernel_size,
|
175 |
+
stride=conv_stem_layer_config.stride,
|
176 |
+
norm_layer=conv_stem_layer_config.norm_layer,
|
177 |
+
activation_layer=conv_stem_layer_config.activation_layer,
|
178 |
+
),
|
179 |
+
)
|
180 |
+
prev_channels = conv_stem_layer_config.out_channels
|
181 |
+
seq_proj.add_module(
|
182 |
+
"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)
|
183 |
+
)
|
184 |
+
self.conv_proj: nn.Module = seq_proj
|
185 |
+
else:
|
186 |
+
self.conv_proj = nn.Conv2d(
|
187 |
+
in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size
|
188 |
+
)
|
189 |
+
|
190 |
+
seq_length = (image_size // patch_size) ** 2
|
191 |
+
|
192 |
+
# Add a class token
|
193 |
+
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))
|
194 |
+
seq_length += 1
|
195 |
+
|
196 |
+
self.encoder = Encoder(
|
197 |
+
seq_length,
|
198 |
+
num_layers,
|
199 |
+
num_heads,
|
200 |
+
hidden_dim,
|
201 |
+
mlp_dim,
|
202 |
+
dropout,
|
203 |
+
attention_dropout,
|
204 |
+
norm_layer,
|
205 |
+
)
|
206 |
+
self.seq_length = seq_length
|
207 |
+
|
208 |
+
heads_layers: OrderedDict[str, nn.Module] = OrderedDict()
|
209 |
+
if representation_size is None:
|
210 |
+
heads_layers["head"] = nn.Linear(hidden_dim, num_classes)
|
211 |
+
else:
|
212 |
+
heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size)
|
213 |
+
heads_layers["act"] = nn.Tanh()
|
214 |
+
heads_layers["head"] = nn.Linear(representation_size, num_classes)
|
215 |
+
|
216 |
+
self.heads = nn.Sequential(heads_layers)
|
217 |
+
|
218 |
+
if isinstance(self.conv_proj, nn.Conv2d):
|
219 |
+
# Init the patchify stem
|
220 |
+
fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]
|
221 |
+
nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))
|
222 |
+
if self.conv_proj.bias is not None:
|
223 |
+
nn.init.zeros_(self.conv_proj.bias)
|
224 |
+
elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):
|
225 |
+
# Init the last 1x1 conv of the conv stem
|
226 |
+
nn.init.normal_(
|
227 |
+
self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)
|
228 |
+
)
|
229 |
+
if self.conv_proj.conv_last.bias is not None:
|
230 |
+
nn.init.zeros_(self.conv_proj.conv_last.bias)
|
231 |
+
|
232 |
+
if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):
|
233 |
+
fan_in = self.heads.pre_logits.in_features
|
234 |
+
nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))
|
235 |
+
nn.init.zeros_(self.heads.pre_logits.bias)
|
236 |
+
|
237 |
+
if isinstance(self.heads.head, nn.Linear):
|
238 |
+
nn.init.zeros_(self.heads.head.weight)
|
239 |
+
nn.init.zeros_(self.heads.head.bias)
|
240 |
+
|
241 |
+
def _process_input(self, x: torch.Tensor) -> torch.Tensor:
|
242 |
+
n, c, h, w = x.shape
|
243 |
+
p = self.patch_size
|
244 |
+
torch._assert(h == self.image_size, "Wrong image height!")
|
245 |
+
torch._assert(w == self.image_size, "Wrong image width!")
|
246 |
+
n_h = h // p
|
247 |
+
n_w = w // p
|
248 |
+
|
249 |
+
# (n, c, h, w) -> (n, hidden_dim, n_h, n_w)
|
250 |
+
x = self.conv_proj(x)
|
251 |
+
# (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))
|
252 |
+
x = x.reshape(n, self.hidden_dim, n_h * n_w)
|
253 |
+
|
254 |
+
# (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)
|
255 |
+
# The self attention layer expects inputs in the format (N, S, E)
|
256 |
+
# where S is the source sequence length, N is the batch size, E is the
|
257 |
+
# embedding dimension
|
258 |
+
x = x.permute(0, 2, 1)
|
259 |
+
|
260 |
+
return x
|
261 |
+
|
262 |
+
def forward(self, x: torch.Tensor):
|
263 |
+
out = {}
|
264 |
+
|
265 |
+
# Reshape and permute the input tensor
|
266 |
+
x = self._process_input(x)
|
267 |
+
n = x.shape[0]
|
268 |
+
|
269 |
+
# Expand the class token to the full batch
|
270 |
+
batch_class_token = self.class_token.expand(n, -1, -1)
|
271 |
+
x = torch.cat([batch_class_token, x], dim=1)
|
272 |
+
|
273 |
+
|
274 |
+
x = self.encoder(x)
|
275 |
+
img_feature = x[:,1:]
|
276 |
+
H = W = int(self.image_size / self.patch_size)
|
277 |
+
out['f4'] = img_feature.view(n, H, W, self.hidden_dim).permute(0,3,1,2)
|
278 |
+
|
279 |
+
# Classifier "token" as used by standard language architectures
|
280 |
+
x = x[:, 0]
|
281 |
+
out['penultimate'] = x
|
282 |
+
|
283 |
+
x = self.heads(x) # I checked that for all pretrained ViT, this is just a fc
|
284 |
+
out['logits'] = x
|
285 |
+
|
286 |
+
return out
|
287 |
+
|
288 |
+
|
289 |
+
def _vision_transformer(
|
290 |
+
arch: str,
|
291 |
+
patch_size: int,
|
292 |
+
num_layers: int,
|
293 |
+
num_heads: int,
|
294 |
+
hidden_dim: int,
|
295 |
+
mlp_dim: int,
|
296 |
+
pretrained: bool,
|
297 |
+
progress: bool,
|
298 |
+
**kwargs: Any,
|
299 |
+
) -> VisionTransformer:
|
300 |
+
image_size = kwargs.pop("image_size", 224)
|
301 |
+
|
302 |
+
model = VisionTransformer(
|
303 |
+
image_size=image_size,
|
304 |
+
patch_size=patch_size,
|
305 |
+
num_layers=num_layers,
|
306 |
+
num_heads=num_heads,
|
307 |
+
hidden_dim=hidden_dim,
|
308 |
+
mlp_dim=mlp_dim,
|
309 |
+
**kwargs,
|
310 |
+
)
|
311 |
+
|
312 |
+
if pretrained:
|
313 |
+
if arch not in model_urls:
|
314 |
+
raise ValueError(f"No checkpoint is available for model type '{arch}'!")
|
315 |
+
state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
|
316 |
+
model.load_state_dict(state_dict)
|
317 |
+
|
318 |
+
return model
|
319 |
+
|
320 |
+
|
321 |
+
def vit_b_16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
|
322 |
+
"""
|
323 |
+
Constructs a vit_b_16 architecture from
|
324 |
+
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
328 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
329 |
+
"""
|
330 |
+
return _vision_transformer(
|
331 |
+
arch="vit_b_16",
|
332 |
+
patch_size=16,
|
333 |
+
num_layers=12,
|
334 |
+
num_heads=12,
|
335 |
+
hidden_dim=768,
|
336 |
+
mlp_dim=3072,
|
337 |
+
pretrained=pretrained,
|
338 |
+
progress=progress,
|
339 |
+
**kwargs,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def vit_b_32(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
|
344 |
+
"""
|
345 |
+
Constructs a vit_b_32 architecture from
|
346 |
+
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
350 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
351 |
+
"""
|
352 |
+
return _vision_transformer(
|
353 |
+
arch="vit_b_32",
|
354 |
+
patch_size=32,
|
355 |
+
num_layers=12,
|
356 |
+
num_heads=12,
|
357 |
+
hidden_dim=768,
|
358 |
+
mlp_dim=3072,
|
359 |
+
pretrained=pretrained,
|
360 |
+
progress=progress,
|
361 |
+
**kwargs,
|
362 |
+
)
|
363 |
+
|
364 |
+
|
365 |
+
def vit_l_16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
|
366 |
+
"""
|
367 |
+
Constructs a vit_l_16 architecture from
|
368 |
+
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
372 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
373 |
+
"""
|
374 |
+
return _vision_transformer(
|
375 |
+
arch="vit_l_16",
|
376 |
+
patch_size=16,
|
377 |
+
num_layers=24,
|
378 |
+
num_heads=16,
|
379 |
+
hidden_dim=1024,
|
380 |
+
mlp_dim=4096,
|
381 |
+
pretrained=pretrained,
|
382 |
+
progress=progress,
|
383 |
+
**kwargs,
|
384 |
+
)
|
385 |
+
|
386 |
+
|
387 |
+
def vit_l_32(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VisionTransformer:
|
388 |
+
"""
|
389 |
+
Constructs a vit_l_32 architecture from
|
390 |
+
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/abs/2010.11929>`_.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
394 |
+
progress (bool): If True, displays a progress bar of the download to stderr
|
395 |
+
"""
|
396 |
+
return _vision_transformer(
|
397 |
+
arch="vit_l_32",
|
398 |
+
patch_size=32,
|
399 |
+
num_layers=24,
|
400 |
+
num_heads=16,
|
401 |
+
hidden_dim=1024,
|
402 |
+
mlp_dim=4096,
|
403 |
+
pretrained=pretrained,
|
404 |
+
progress=progress,
|
405 |
+
**kwargs,
|
406 |
+
)
|
407 |
+
|
408 |
+
|
409 |
+
def interpolate_embeddings(
|
410 |
+
image_size: int,
|
411 |
+
patch_size: int,
|
412 |
+
model_state: "OrderedDict[str, torch.Tensor]",
|
413 |
+
interpolation_mode: str = "bicubic",
|
414 |
+
reset_heads: bool = False,
|
415 |
+
) -> "OrderedDict[str, torch.Tensor]":
|
416 |
+
"""This function helps interpolating positional embeddings during checkpoint loading,
|
417 |
+
especially when you want to apply a pre-trained model on images with different resolution.
|
418 |
+
|
419 |
+
Args:
|
420 |
+
image_size (int): Image size of the new model.
|
421 |
+
patch_size (int): Patch size of the new model.
|
422 |
+
model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model.
|
423 |
+
interpolation_mode (str): The algorithm used for upsampling. Default: bicubic.
|
424 |
+
reset_heads (bool): If true, not copying the state of heads. Default: False.
|
425 |
+
|
426 |
+
Returns:
|
427 |
+
OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model.
|
428 |
+
"""
|
429 |
+
# Shape of pos_embedding is (1, seq_length, hidden_dim)
|
430 |
+
pos_embedding = model_state["encoder.pos_embedding"]
|
431 |
+
n, seq_length, hidden_dim = pos_embedding.shape
|
432 |
+
if n != 1:
|
433 |
+
raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}")
|
434 |
+
|
435 |
+
new_seq_length = (image_size // patch_size) ** 2 + 1
|
436 |
+
|
437 |
+
# Need to interpolate the weights for the position embedding.
|
438 |
+
# We do this by reshaping the positions embeddings to a 2d grid, performing
|
439 |
+
# an interpolation in the (h, w) space and then reshaping back to a 1d grid.
|
440 |
+
if new_seq_length != seq_length:
|
441 |
+
# The class token embedding shouldn't be interpolated so we split it up.
|
442 |
+
seq_length -= 1
|
443 |
+
new_seq_length -= 1
|
444 |
+
pos_embedding_token = pos_embedding[:, :1, :]
|
445 |
+
pos_embedding_img = pos_embedding[:, 1:, :]
|
446 |
+
|
447 |
+
# (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length)
|
448 |
+
pos_embedding_img = pos_embedding_img.permute(0, 2, 1)
|
449 |
+
seq_length_1d = int(math.sqrt(seq_length))
|
450 |
+
torch._assert(seq_length_1d * seq_length_1d == seq_length, "seq_length is not a perfect square!")
|
451 |
+
|
452 |
+
# (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d)
|
453 |
+
pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d)
|
454 |
+
new_seq_length_1d = image_size // patch_size
|
455 |
+
|
456 |
+
# Perform interpolation.
|
457 |
+
# (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d)
|
458 |
+
new_pos_embedding_img = nn.functional.interpolate(
|
459 |
+
pos_embedding_img,
|
460 |
+
size=new_seq_length_1d,
|
461 |
+
mode=interpolation_mode,
|
462 |
+
align_corners=True,
|
463 |
+
)
|
464 |
+
|
465 |
+
# (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length)
|
466 |
+
new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length)
|
467 |
+
|
468 |
+
# (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim)
|
469 |
+
new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1)
|
470 |
+
new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)
|
471 |
+
|
472 |
+
model_state["encoder.pos_embedding"] = new_pos_embedding
|
473 |
+
|
474 |
+
if reset_heads:
|
475 |
+
model_state_copy: "OrderedDict[str, torch.Tensor]" = OrderedDict()
|
476 |
+
for k, v in model_state.items():
|
477 |
+
if not k.startswith("heads"):
|
478 |
+
model_state_copy[k] = v
|
479 |
+
model_state = model_state_copy
|
480 |
+
|
481 |
+
return model_state
|
models/vision_transformer_misc.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
from .vision_transformer_utils import _log_api_usage_once
|
7 |
+
|
8 |
+
|
9 |
+
interpolate = torch.nn.functional.interpolate
|
10 |
+
|
11 |
+
|
12 |
+
# This is not in nn
|
13 |
+
class FrozenBatchNorm2d(torch.nn.Module):
|
14 |
+
"""
|
15 |
+
BatchNorm2d where the batch statistics and the affine parameters are fixed
|
16 |
+
|
17 |
+
Args:
|
18 |
+
num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
|
19 |
+
eps (float): a value added to the denominator for numerical stability. Default: 1e-5
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
num_features: int,
|
25 |
+
eps: float = 1e-5,
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
_log_api_usage_once(self)
|
29 |
+
self.eps = eps
|
30 |
+
self.register_buffer("weight", torch.ones(num_features))
|
31 |
+
self.register_buffer("bias", torch.zeros(num_features))
|
32 |
+
self.register_buffer("running_mean", torch.zeros(num_features))
|
33 |
+
self.register_buffer("running_var", torch.ones(num_features))
|
34 |
+
|
35 |
+
def _load_from_state_dict(
|
36 |
+
self,
|
37 |
+
state_dict: dict,
|
38 |
+
prefix: str,
|
39 |
+
local_metadata: dict,
|
40 |
+
strict: bool,
|
41 |
+
missing_keys: List[str],
|
42 |
+
unexpected_keys: List[str],
|
43 |
+
error_msgs: List[str],
|
44 |
+
):
|
45 |
+
num_batches_tracked_key = prefix + "num_batches_tracked"
|
46 |
+
if num_batches_tracked_key in state_dict:
|
47 |
+
del state_dict[num_batches_tracked_key]
|
48 |
+
|
49 |
+
super()._load_from_state_dict(
|
50 |
+
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
51 |
+
)
|
52 |
+
|
53 |
+
def forward(self, x: Tensor) -> Tensor:
|
54 |
+
# move reshapes to the beginning
|
55 |
+
# to make it fuser-friendly
|
56 |
+
w = self.weight.reshape(1, -1, 1, 1)
|
57 |
+
b = self.bias.reshape(1, -1, 1, 1)
|
58 |
+
rv = self.running_var.reshape(1, -1, 1, 1)
|
59 |
+
rm = self.running_mean.reshape(1, -1, 1, 1)
|
60 |
+
scale = w * (rv + self.eps).rsqrt()
|
61 |
+
bias = b - rm * scale
|
62 |
+
return x * scale + bias
|
63 |
+
|
64 |
+
def __repr__(self) -> str:
|
65 |
+
return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps})"
|
66 |
+
|
67 |
+
|
68 |
+
class ConvNormActivation(torch.nn.Sequential):
|
69 |
+
"""
|
70 |
+
Configurable block used for Convolution-Normalzation-Activation blocks.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
in_channels (int): Number of channels in the input image
|
74 |
+
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
|
75 |
+
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
|
76 |
+
stride (int, optional): Stride of the convolution. Default: 1
|
77 |
+
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
|
78 |
+
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
79 |
+
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolutiuon layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
|
80 |
+
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
|
81 |
+
dilation (int): Spacing between kernel elements. Default: 1
|
82 |
+
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
|
83 |
+
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
|
84 |
+
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
in_channels: int,
|
90 |
+
out_channels: int,
|
91 |
+
kernel_size: int = 3,
|
92 |
+
stride: int = 1,
|
93 |
+
padding: Optional[int] = None,
|
94 |
+
groups: int = 1,
|
95 |
+
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
|
96 |
+
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
|
97 |
+
dilation: int = 1,
|
98 |
+
inplace: Optional[bool] = True,
|
99 |
+
bias: Optional[bool] = None,
|
100 |
+
) -> None:
|
101 |
+
if padding is None:
|
102 |
+
padding = (kernel_size - 1) // 2 * dilation
|
103 |
+
if bias is None:
|
104 |
+
bias = norm_layer is None
|
105 |
+
layers = [
|
106 |
+
torch.nn.Conv2d(
|
107 |
+
in_channels,
|
108 |
+
out_channels,
|
109 |
+
kernel_size,
|
110 |
+
stride,
|
111 |
+
padding,
|
112 |
+
dilation=dilation,
|
113 |
+
groups=groups,
|
114 |
+
bias=bias,
|
115 |
+
)
|
116 |
+
]
|
117 |
+
if norm_layer is not None:
|
118 |
+
layers.append(norm_layer(out_channels))
|
119 |
+
if activation_layer is not None:
|
120 |
+
params = {} if inplace is None else {"inplace": inplace}
|
121 |
+
layers.append(activation_layer(**params))
|
122 |
+
super().__init__(*layers)
|
123 |
+
_log_api_usage_once(self)
|
124 |
+
self.out_channels = out_channels
|
125 |
+
|
126 |
+
|
127 |
+
class SqueezeExcitation(torch.nn.Module):
|
128 |
+
"""
|
129 |
+
This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
|
130 |
+
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in in eq. 3.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
input_channels (int): Number of channels in the input image
|
134 |
+
squeeze_channels (int): Number of squeeze channels
|
135 |
+
activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
|
136 |
+
scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
input_channels: int,
|
142 |
+
squeeze_channels: int,
|
143 |
+
activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
|
144 |
+
scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
|
145 |
+
) -> None:
|
146 |
+
super().__init__()
|
147 |
+
_log_api_usage_once(self)
|
148 |
+
self.avgpool = torch.nn.AdaptiveAvgPool2d(1)
|
149 |
+
self.fc1 = torch.nn.Conv2d(input_channels, squeeze_channels, 1)
|
150 |
+
self.fc2 = torch.nn.Conv2d(squeeze_channels, input_channels, 1)
|
151 |
+
self.activation = activation()
|
152 |
+
self.scale_activation = scale_activation()
|
153 |
+
|
154 |
+
def _scale(self, input: Tensor) -> Tensor:
|
155 |
+
scale = self.avgpool(input)
|
156 |
+
scale = self.fc1(scale)
|
157 |
+
scale = self.activation(scale)
|
158 |
+
scale = self.fc2(scale)
|
159 |
+
return self.scale_activation(scale)
|
160 |
+
|
161 |
+
def forward(self, input: Tensor) -> Tensor:
|
162 |
+
scale = self._scale(input)
|
163 |
+
return scale * input
|
models/vision_transformer_utils.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import pathlib
|
3 |
+
import warnings
|
4 |
+
from types import FunctionType
|
5 |
+
from typing import Any, BinaryIO, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from PIL import Image, ImageColor, ImageDraw, ImageFont
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"make_grid",
|
13 |
+
"save_image",
|
14 |
+
"draw_bounding_boxes",
|
15 |
+
"draw_segmentation_masks",
|
16 |
+
"draw_keypoints",
|
17 |
+
"flow_to_image",
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def make_grid(
|
23 |
+
tensor: Union[torch.Tensor, List[torch.Tensor]],
|
24 |
+
nrow: int = 8,
|
25 |
+
padding: int = 2,
|
26 |
+
normalize: bool = False,
|
27 |
+
value_range: Optional[Tuple[int, int]] = None,
|
28 |
+
scale_each: bool = False,
|
29 |
+
pad_value: float = 0.0,
|
30 |
+
**kwargs,
|
31 |
+
) -> torch.Tensor:
|
32 |
+
"""
|
33 |
+
Make a grid of images.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
tensor (Tensor or list): 4D mini-batch Tensor of shape (B x C x H x W)
|
37 |
+
or a list of images all of the same size.
|
38 |
+
nrow (int, optional): Number of images displayed in each row of the grid.
|
39 |
+
The final grid size is ``(B / nrow, nrow)``. Default: ``8``.
|
40 |
+
padding (int, optional): amount of padding. Default: ``2``.
|
41 |
+
normalize (bool, optional): If True, shift the image to the range (0, 1),
|
42 |
+
by the min and max values specified by ``value_range``. Default: ``False``.
|
43 |
+
value_range (tuple, optional): tuple (min, max) where min and max are numbers,
|
44 |
+
then these numbers are used to normalize the image. By default, min and max
|
45 |
+
are computed from the tensor.
|
46 |
+
range (tuple. optional):
|
47 |
+
.. warning::
|
48 |
+
This parameter was deprecated in ``0.12`` and will be removed in ``0.14``. Please use ``value_range``
|
49 |
+
instead.
|
50 |
+
scale_each (bool, optional): If ``True``, scale each image in the batch of
|
51 |
+
images separately rather than the (min, max) over all images. Default: ``False``.
|
52 |
+
pad_value (float, optional): Value for the padded pixels. Default: ``0``.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
grid (Tensor): the tensor containing grid of images.
|
56 |
+
"""
|
57 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
58 |
+
_log_api_usage_once(make_grid)
|
59 |
+
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
|
60 |
+
raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}")
|
61 |
+
|
62 |
+
if "range" in kwargs.keys():
|
63 |
+
warnings.warn(
|
64 |
+
"The parameter 'range' is deprecated since 0.12 and will be removed in 0.14. "
|
65 |
+
"Please use 'value_range' instead."
|
66 |
+
)
|
67 |
+
value_range = kwargs["range"]
|
68 |
+
|
69 |
+
# if list of tensors, convert to a 4D mini-batch Tensor
|
70 |
+
if isinstance(tensor, list):
|
71 |
+
tensor = torch.stack(tensor, dim=0)
|
72 |
+
|
73 |
+
if tensor.dim() == 2: # single image H x W
|
74 |
+
tensor = tensor.unsqueeze(0)
|
75 |
+
if tensor.dim() == 3: # single image
|
76 |
+
if tensor.size(0) == 1: # if single-channel, convert to 3-channel
|
77 |
+
tensor = torch.cat((tensor, tensor, tensor), 0)
|
78 |
+
tensor = tensor.unsqueeze(0)
|
79 |
+
|
80 |
+
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
|
81 |
+
tensor = torch.cat((tensor, tensor, tensor), 1)
|
82 |
+
|
83 |
+
if normalize is True:
|
84 |
+
tensor = tensor.clone() # avoid modifying tensor in-place
|
85 |
+
if value_range is not None:
|
86 |
+
assert isinstance(
|
87 |
+
value_range, tuple
|
88 |
+
), "value_range has to be a tuple (min, max) if specified. min and max are numbers"
|
89 |
+
|
90 |
+
def norm_ip(img, low, high):
|
91 |
+
img.clamp_(min=low, max=high)
|
92 |
+
img.sub_(low).div_(max(high - low, 1e-5))
|
93 |
+
|
94 |
+
def norm_range(t, value_range):
|
95 |
+
if value_range is not None:
|
96 |
+
norm_ip(t, value_range[0], value_range[1])
|
97 |
+
else:
|
98 |
+
norm_ip(t, float(t.min()), float(t.max()))
|
99 |
+
|
100 |
+
if scale_each is True:
|
101 |
+
for t in tensor: # loop over mini-batch dimension
|
102 |
+
norm_range(t, value_range)
|
103 |
+
else:
|
104 |
+
norm_range(tensor, value_range)
|
105 |
+
|
106 |
+
assert isinstance(tensor, torch.Tensor)
|
107 |
+
if tensor.size(0) == 1:
|
108 |
+
return tensor.squeeze(0)
|
109 |
+
|
110 |
+
# make the mini-batch of images into a grid
|
111 |
+
nmaps = tensor.size(0)
|
112 |
+
xmaps = min(nrow, nmaps)
|
113 |
+
ymaps = int(math.ceil(float(nmaps) / xmaps))
|
114 |
+
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
|
115 |
+
num_channels = tensor.size(1)
|
116 |
+
grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
|
117 |
+
k = 0
|
118 |
+
for y in range(ymaps):
|
119 |
+
for x in range(xmaps):
|
120 |
+
if k >= nmaps:
|
121 |
+
break
|
122 |
+
# Tensor.copy_() is a valid method but seems to be missing from the stubs
|
123 |
+
# https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
|
124 |
+
grid.narrow(1, y * height + padding, height - padding).narrow( # type: ignore[attr-defined]
|
125 |
+
2, x * width + padding, width - padding
|
126 |
+
).copy_(tensor[k])
|
127 |
+
k = k + 1
|
128 |
+
return grid
|
129 |
+
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def save_image(
|
133 |
+
tensor: Union[torch.Tensor, List[torch.Tensor]],
|
134 |
+
fp: Union[str, pathlib.Path, BinaryIO],
|
135 |
+
format: Optional[str] = None,
|
136 |
+
**kwargs,
|
137 |
+
) -> None:
|
138 |
+
"""
|
139 |
+
Save a given Tensor into an image file.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
|
143 |
+
saves the tensor as a grid of images by calling ``make_grid``.
|
144 |
+
fp (string or file object): A filename or a file object
|
145 |
+
format(Optional): If omitted, the format to use is determined from the filename extension.
|
146 |
+
If a file object was used instead of a filename, this parameter should always be used.
|
147 |
+
**kwargs: Other arguments are documented in ``make_grid``.
|
148 |
+
"""
|
149 |
+
|
150 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
151 |
+
_log_api_usage_once(save_image)
|
152 |
+
grid = make_grid(tensor, **kwargs)
|
153 |
+
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
|
154 |
+
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
155 |
+
im = Image.fromarray(ndarr)
|
156 |
+
im.save(fp, format=format)
|
157 |
+
|
158 |
+
|
159 |
+
@torch.no_grad()
|
160 |
+
def draw_bounding_boxes(
|
161 |
+
image: torch.Tensor,
|
162 |
+
boxes: torch.Tensor,
|
163 |
+
labels: Optional[List[str]] = None,
|
164 |
+
colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
|
165 |
+
fill: Optional[bool] = False,
|
166 |
+
width: int = 1,
|
167 |
+
font: Optional[str] = None,
|
168 |
+
font_size: int = 10,
|
169 |
+
) -> torch.Tensor:
|
170 |
+
|
171 |
+
"""
|
172 |
+
Draws bounding boxes on given image.
|
173 |
+
The values of the input image should be uint8 between 0 and 255.
|
174 |
+
If fill is True, Resulting Tensor should be saved as PNG image.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
image (Tensor): Tensor of shape (C x H x W) and dtype uint8.
|
178 |
+
boxes (Tensor): Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that
|
179 |
+
the boxes are absolute coordinates with respect to the image. In other words: `0 <= xmin < xmax < W` and
|
180 |
+
`0 <= ymin < ymax < H`.
|
181 |
+
labels (List[str]): List containing the labels of bounding boxes.
|
182 |
+
colors (color or list of colors, optional): List containing the colors
|
183 |
+
of the boxes or single color for all boxes. The color can be represented as
|
184 |
+
PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
|
185 |
+
By default, random colors are generated for boxes.
|
186 |
+
fill (bool): If `True` fills the bounding box with specified color.
|
187 |
+
width (int): Width of bounding box.
|
188 |
+
font (str): A filename containing a TrueType font. If the file is not found in this filename, the loader may
|
189 |
+
also search in other directories, such as the `fonts/` directory on Windows or `/Library/Fonts/`,
|
190 |
+
`/System/Library/Fonts/` and `~/Library/Fonts/` on macOS.
|
191 |
+
font_size (int): The requested font size in points.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
img (Tensor[C, H, W]): Image Tensor of dtype uint8 with bounding boxes plotted.
|
195 |
+
"""
|
196 |
+
|
197 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
198 |
+
_log_api_usage_once(draw_bounding_boxes)
|
199 |
+
if not isinstance(image, torch.Tensor):
|
200 |
+
raise TypeError(f"Tensor expected, got {type(image)}")
|
201 |
+
elif image.dtype != torch.uint8:
|
202 |
+
raise ValueError(f"Tensor uint8 expected, got {image.dtype}")
|
203 |
+
elif image.dim() != 3:
|
204 |
+
raise ValueError("Pass individual images, not batches")
|
205 |
+
elif image.size(0) not in {1, 3}:
|
206 |
+
raise ValueError("Only grayscale and RGB images are supported")
|
207 |
+
|
208 |
+
num_boxes = boxes.shape[0]
|
209 |
+
|
210 |
+
if labels is None:
|
211 |
+
labels: Union[List[str], List[None]] = [None] * num_boxes # type: ignore[no-redef]
|
212 |
+
elif len(labels) != num_boxes:
|
213 |
+
raise ValueError(
|
214 |
+
f"Number of boxes ({num_boxes}) and labels ({len(labels)}) mismatch. Please specify labels for each box."
|
215 |
+
)
|
216 |
+
|
217 |
+
if colors is None:
|
218 |
+
colors = _generate_color_palette(num_boxes)
|
219 |
+
elif isinstance(colors, list):
|
220 |
+
if len(colors) < num_boxes:
|
221 |
+
raise ValueError(f"Number of colors ({len(colors)}) is less than number of boxes ({num_boxes}). ")
|
222 |
+
else: # colors specifies a single color for all boxes
|
223 |
+
colors = [colors] * num_boxes
|
224 |
+
|
225 |
+
colors = [(ImageColor.getrgb(color) if isinstance(color, str) else color) for color in colors]
|
226 |
+
|
227 |
+
# Handle Grayscale images
|
228 |
+
if image.size(0) == 1:
|
229 |
+
image = torch.tile(image, (3, 1, 1))
|
230 |
+
|
231 |
+
ndarr = image.permute(1, 2, 0).cpu().numpy()
|
232 |
+
img_to_draw = Image.fromarray(ndarr)
|
233 |
+
img_boxes = boxes.to(torch.int64).tolist()
|
234 |
+
|
235 |
+
if fill:
|
236 |
+
draw = ImageDraw.Draw(img_to_draw, "RGBA")
|
237 |
+
else:
|
238 |
+
draw = ImageDraw.Draw(img_to_draw)
|
239 |
+
|
240 |
+
txt_font = ImageFont.load_default() if font is None else ImageFont.truetype(font=font, size=font_size)
|
241 |
+
|
242 |
+
for bbox, color, label in zip(img_boxes, colors, labels): # type: ignore[arg-type]
|
243 |
+
if fill:
|
244 |
+
fill_color = color + (100,)
|
245 |
+
draw.rectangle(bbox, width=width, outline=color, fill=fill_color)
|
246 |
+
else:
|
247 |
+
draw.rectangle(bbox, width=width, outline=color)
|
248 |
+
|
249 |
+
if label is not None:
|
250 |
+
margin = width + 1
|
251 |
+
draw.text((bbox[0] + margin, bbox[1] + margin), label, fill=color, font=txt_font)
|
252 |
+
|
253 |
+
return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
|
254 |
+
|
255 |
+
|
256 |
+
@torch.no_grad()
|
257 |
+
def draw_segmentation_masks(
|
258 |
+
image: torch.Tensor,
|
259 |
+
masks: torch.Tensor,
|
260 |
+
alpha: float = 0.8,
|
261 |
+
colors: Optional[Union[List[Union[str, Tuple[int, int, int]]], str, Tuple[int, int, int]]] = None,
|
262 |
+
) -> torch.Tensor:
|
263 |
+
|
264 |
+
"""
|
265 |
+
Draws segmentation masks on given RGB image.
|
266 |
+
The values of the input image should be uint8 between 0 and 255.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
|
270 |
+
masks (Tensor): Tensor of shape (num_masks, H, W) or (H, W) and dtype bool.
|
271 |
+
alpha (float): Float number between 0 and 1 denoting the transparency of the masks.
|
272 |
+
0 means full transparency, 1 means no transparency.
|
273 |
+
colors (color or list of colors, optional): List containing the colors
|
274 |
+
of the masks or single color for all masks. The color can be represented as
|
275 |
+
PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
|
276 |
+
By default, random colors are generated for each mask.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
img (Tensor[C, H, W]): Image Tensor, with segmentation masks drawn on top.
|
280 |
+
"""
|
281 |
+
|
282 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
283 |
+
_log_api_usage_once(draw_segmentation_masks)
|
284 |
+
if not isinstance(image, torch.Tensor):
|
285 |
+
raise TypeError(f"The image must be a tensor, got {type(image)}")
|
286 |
+
elif image.dtype != torch.uint8:
|
287 |
+
raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
|
288 |
+
elif image.dim() != 3:
|
289 |
+
raise ValueError("Pass individual images, not batches")
|
290 |
+
elif image.size()[0] != 3:
|
291 |
+
raise ValueError("Pass an RGB image. Other Image formats are not supported")
|
292 |
+
if masks.ndim == 2:
|
293 |
+
masks = masks[None, :, :]
|
294 |
+
if masks.ndim != 3:
|
295 |
+
raise ValueError("masks must be of shape (H, W) or (batch_size, H, W)")
|
296 |
+
if masks.dtype != torch.bool:
|
297 |
+
raise ValueError(f"The masks must be of dtype bool. Got {masks.dtype}")
|
298 |
+
if masks.shape[-2:] != image.shape[-2:]:
|
299 |
+
raise ValueError("The image and the masks must have the same height and width")
|
300 |
+
|
301 |
+
num_masks = masks.size()[0]
|
302 |
+
if colors is not None and num_masks > len(colors):
|
303 |
+
raise ValueError(f"There are more masks ({num_masks}) than colors ({len(colors)})")
|
304 |
+
|
305 |
+
if colors is None:
|
306 |
+
colors = _generate_color_palette(num_masks)
|
307 |
+
|
308 |
+
if not isinstance(colors, list):
|
309 |
+
colors = [colors]
|
310 |
+
if not isinstance(colors[0], (tuple, str)):
|
311 |
+
raise ValueError("colors must be a tuple or a string, or a list thereof")
|
312 |
+
if isinstance(colors[0], tuple) and len(colors[0]) != 3:
|
313 |
+
raise ValueError("It seems that you passed a tuple of colors instead of a list of colors")
|
314 |
+
|
315 |
+
out_dtype = torch.uint8
|
316 |
+
|
317 |
+
colors_ = []
|
318 |
+
for color in colors:
|
319 |
+
if isinstance(color, str):
|
320 |
+
color = ImageColor.getrgb(color)
|
321 |
+
colors_.append(torch.tensor(color, dtype=out_dtype))
|
322 |
+
|
323 |
+
img_to_draw = image.detach().clone()
|
324 |
+
# TODO: There might be a way to vectorize this
|
325 |
+
for mask, color in zip(masks, colors_):
|
326 |
+
img_to_draw[:, mask] = color[:, None]
|
327 |
+
|
328 |
+
out = image * (1 - alpha) + img_to_draw * alpha
|
329 |
+
return out.to(out_dtype)
|
330 |
+
|
331 |
+
|
332 |
+
@torch.no_grad()
|
333 |
+
def draw_keypoints(
|
334 |
+
image: torch.Tensor,
|
335 |
+
keypoints: torch.Tensor,
|
336 |
+
connectivity: Optional[List[Tuple[int, int]]] = None,
|
337 |
+
colors: Optional[Union[str, Tuple[int, int, int]]] = None,
|
338 |
+
radius: int = 2,
|
339 |
+
width: int = 3,
|
340 |
+
) -> torch.Tensor:
|
341 |
+
|
342 |
+
"""
|
343 |
+
Draws Keypoints on given RGB image.
|
344 |
+
The values of the input image should be uint8 between 0 and 255.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
image (Tensor): Tensor of shape (3, H, W) and dtype uint8.
|
348 |
+
keypoints (Tensor): Tensor of shape (num_instances, K, 2) the K keypoints location for each of the N instances,
|
349 |
+
in the format [x, y].
|
350 |
+
connectivity (List[Tuple[int, int]]]): A List of tuple where,
|
351 |
+
each tuple contains pair of keypoints to be connected.
|
352 |
+
colors (str, Tuple): The color can be represented as
|
353 |
+
PIL strings e.g. "red" or "#FF00FF", or as RGB tuples e.g. ``(240, 10, 157)``.
|
354 |
+
radius (int): Integer denoting radius of keypoint.
|
355 |
+
width (int): Integer denoting width of line connecting keypoints.
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
img (Tensor[C, H, W]): Image Tensor of dtype uint8 with keypoints drawn.
|
359 |
+
"""
|
360 |
+
|
361 |
+
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
362 |
+
_log_api_usage_once(draw_keypoints)
|
363 |
+
if not isinstance(image, torch.Tensor):
|
364 |
+
raise TypeError(f"The image must be a tensor, got {type(image)}")
|
365 |
+
elif image.dtype != torch.uint8:
|
366 |
+
raise ValueError(f"The image dtype must be uint8, got {image.dtype}")
|
367 |
+
elif image.dim() != 3:
|
368 |
+
raise ValueError("Pass individual images, not batches")
|
369 |
+
elif image.size()[0] != 3:
|
370 |
+
raise ValueError("Pass an RGB image. Other Image formats are not supported")
|
371 |
+
|
372 |
+
if keypoints.ndim != 3:
|
373 |
+
raise ValueError("keypoints must be of shape (num_instances, K, 2)")
|
374 |
+
|
375 |
+
ndarr = image.permute(1, 2, 0).cpu().numpy()
|
376 |
+
img_to_draw = Image.fromarray(ndarr)
|
377 |
+
draw = ImageDraw.Draw(img_to_draw)
|
378 |
+
img_kpts = keypoints.to(torch.int64).tolist()
|
379 |
+
|
380 |
+
for kpt_id, kpt_inst in enumerate(img_kpts):
|
381 |
+
for inst_id, kpt in enumerate(kpt_inst):
|
382 |
+
x1 = kpt[0] - radius
|
383 |
+
x2 = kpt[0] + radius
|
384 |
+
y1 = kpt[1] - radius
|
385 |
+
y2 = kpt[1] + radius
|
386 |
+
draw.ellipse([x1, y1, x2, y2], fill=colors, outline=None, width=0)
|
387 |
+
|
388 |
+
if connectivity:
|
389 |
+
for connection in connectivity:
|
390 |
+
start_pt_x = kpt_inst[connection[0]][0]
|
391 |
+
start_pt_y = kpt_inst[connection[0]][1]
|
392 |
+
|
393 |
+
end_pt_x = kpt_inst[connection[1]][0]
|
394 |
+
end_pt_y = kpt_inst[connection[1]][1]
|
395 |
+
|
396 |
+
draw.line(
|
397 |
+
((start_pt_x, start_pt_y), (end_pt_x, end_pt_y)),
|
398 |
+
width=width,
|
399 |
+
)
|
400 |
+
|
401 |
+
return torch.from_numpy(np.array(img_to_draw)).permute(2, 0, 1).to(dtype=torch.uint8)
|
402 |
+
|
403 |
+
|
404 |
+
# Flow visualization code adapted from https://github.com/tomrunia/OpticalFlow_Visualization
|
405 |
+
@torch.no_grad()
|
406 |
+
def flow_to_image(flow: torch.Tensor) -> torch.Tensor:
|
407 |
+
|
408 |
+
"""
|
409 |
+
Converts a flow to an RGB image.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
flow (Tensor): Flow of shape (N, 2, H, W) or (2, H, W) and dtype torch.float.
|
413 |
+
|
414 |
+
Returns:
|
415 |
+
img (Tensor): Image Tensor of dtype uint8 where each color corresponds
|
416 |
+
to a given flow direction. Shape is (N, 3, H, W) or (3, H, W) depending on the input.
|
417 |
+
"""
|
418 |
+
|
419 |
+
if flow.dtype != torch.float:
|
420 |
+
raise ValueError(f"Flow should be of dtype torch.float, got {flow.dtype}.")
|
421 |
+
|
422 |
+
orig_shape = flow.shape
|
423 |
+
if flow.ndim == 3:
|
424 |
+
flow = flow[None] # Add batch dim
|
425 |
+
|
426 |
+
if flow.ndim != 4 or flow.shape[1] != 2:
|
427 |
+
raise ValueError(f"Input flow should have shape (2, H, W) or (N, 2, H, W), got {orig_shape}.")
|
428 |
+
|
429 |
+
max_norm = torch.sum(flow ** 2, dim=1).sqrt().max()
|
430 |
+
epsilon = torch.finfo((flow).dtype).eps
|
431 |
+
normalized_flow = flow / (max_norm + epsilon)
|
432 |
+
img = _normalized_flow_to_image(normalized_flow)
|
433 |
+
|
434 |
+
if len(orig_shape) == 3:
|
435 |
+
img = img[0] # Remove batch dim
|
436 |
+
return img
|
437 |
+
|
438 |
+
|
439 |
+
@torch.no_grad()
|
440 |
+
def _normalized_flow_to_image(normalized_flow: torch.Tensor) -> torch.Tensor:
|
441 |
+
|
442 |
+
"""
|
443 |
+
Converts a batch of normalized flow to an RGB image.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
normalized_flow (torch.Tensor): Normalized flow tensor of shape (N, 2, H, W)
|
447 |
+
Returns:
|
448 |
+
img (Tensor(N, 3, H, W)): Flow visualization image of dtype uint8.
|
449 |
+
"""
|
450 |
+
|
451 |
+
N, _, H, W = normalized_flow.shape
|
452 |
+
device = normalized_flow.device
|
453 |
+
flow_image = torch.zeros((N, 3, H, W), dtype=torch.uint8, device=device)
|
454 |
+
colorwheel = _make_colorwheel().to(device) # shape [55x3]
|
455 |
+
num_cols = colorwheel.shape[0]
|
456 |
+
norm = torch.sum(normalized_flow ** 2, dim=1).sqrt()
|
457 |
+
a = torch.atan2(-normalized_flow[:, 1, :, :], -normalized_flow[:, 0, :, :]) / torch.pi
|
458 |
+
fk = (a + 1) / 2 * (num_cols - 1)
|
459 |
+
k0 = torch.floor(fk).to(torch.long)
|
460 |
+
k1 = k0 + 1
|
461 |
+
k1[k1 == num_cols] = 0
|
462 |
+
f = fk - k0
|
463 |
+
|
464 |
+
for c in range(colorwheel.shape[1]):
|
465 |
+
tmp = colorwheel[:, c]
|
466 |
+
col0 = tmp[k0] / 255.0
|
467 |
+
col1 = tmp[k1] / 255.0
|
468 |
+
col = (1 - f) * col0 + f * col1
|
469 |
+
col = 1 - norm * (1 - col)
|
470 |
+
flow_image[:, c, :, :] = torch.floor(255 * col)
|
471 |
+
return flow_image
|
472 |
+
|
473 |
+
|
474 |
+
def _make_colorwheel() -> torch.Tensor:
|
475 |
+
"""
|
476 |
+
Generates a color wheel for optical flow visualization as presented in:
|
477 |
+
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
|
478 |
+
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf.
|
479 |
+
|
480 |
+
Returns:
|
481 |
+
colorwheel (Tensor[55, 3]): Colorwheel Tensor.
|
482 |
+
"""
|
483 |
+
|
484 |
+
RY = 15
|
485 |
+
YG = 6
|
486 |
+
GC = 4
|
487 |
+
CB = 11
|
488 |
+
BM = 13
|
489 |
+
MR = 6
|
490 |
+
|
491 |
+
ncols = RY + YG + GC + CB + BM + MR
|
492 |
+
colorwheel = torch.zeros((ncols, 3))
|
493 |
+
col = 0
|
494 |
+
|
495 |
+
# RY
|
496 |
+
colorwheel[0:RY, 0] = 255
|
497 |
+
colorwheel[0:RY, 1] = torch.floor(255 * torch.arange(0, RY) / RY)
|
498 |
+
col = col + RY
|
499 |
+
# YG
|
500 |
+
colorwheel[col : col + YG, 0] = 255 - torch.floor(255 * torch.arange(0, YG) / YG)
|
501 |
+
colorwheel[col : col + YG, 1] = 255
|
502 |
+
col = col + YG
|
503 |
+
# GC
|
504 |
+
colorwheel[col : col + GC, 1] = 255
|
505 |
+
colorwheel[col : col + GC, 2] = torch.floor(255 * torch.arange(0, GC) / GC)
|
506 |
+
col = col + GC
|
507 |
+
# CB
|
508 |
+
colorwheel[col : col + CB, 1] = 255 - torch.floor(255 * torch.arange(CB) / CB)
|
509 |
+
colorwheel[col : col + CB, 2] = 255
|
510 |
+
col = col + CB
|
511 |
+
# BM
|
512 |
+
colorwheel[col : col + BM, 2] = 255
|
513 |
+
colorwheel[col : col + BM, 0] = torch.floor(255 * torch.arange(0, BM) / BM)
|
514 |
+
col = col + BM
|
515 |
+
# MR
|
516 |
+
colorwheel[col : col + MR, 2] = 255 - torch.floor(255 * torch.arange(MR) / MR)
|
517 |
+
colorwheel[col : col + MR, 0] = 255
|
518 |
+
return colorwheel
|
519 |
+
|
520 |
+
|
521 |
+
def _generate_color_palette(num_objects: int):
|
522 |
+
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
|
523 |
+
return [tuple((i * palette) % 255) for i in range(num_objects)]
|
524 |
+
|
525 |
+
|
526 |
+
def _log_api_usage_once(obj: Any) -> None:
|
527 |
+
|
528 |
+
"""
|
529 |
+
Logs API usage(module and name) within an organization.
|
530 |
+
In a large ecosystem, it's often useful to track the PyTorch and
|
531 |
+
TorchVision APIs usage. This API provides the similar functionality to the
|
532 |
+
logging module in the Python stdlib. It can be used for debugging purpose
|
533 |
+
to log which methods are used and by default it is inactive, unless the user
|
534 |
+
manually subscribes a logger via the `SetAPIUsageLogger method <https://github.com/pytorch/pytorch/blob/eb3b9fe719b21fae13c7a7cf3253f970290a573e/c10/util/Logging.cpp#L114>`_.
|
535 |
+
Please note it is triggered only once for the same API call within a process.
|
536 |
+
It does not collect any data from open-source users since it is no-op by default.
|
537 |
+
For more information, please refer to
|
538 |
+
* PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging;
|
539 |
+
* Logging policy: https://github.com/pytorch/vision/issues/5052;
|
540 |
+
|
541 |
+
Args:
|
542 |
+
obj (class instance or method): an object to extract info from.
|
543 |
+
"""
|
544 |
+
if not obj.__module__.startswith("torchvision"):
|
545 |
+
return
|
546 |
+
name = obj.__class__.__name__
|
547 |
+
if isinstance(obj, FunctionType):
|
548 |
+
name = obj.__name__
|
549 |
+
torch._C._log_api_usage_once(f"{obj.__module__}.{name}")
|
networks/__init__.py
ADDED
File without changes
|
networks/base_model.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import init
|
5 |
+
from torch.optim import lr_scheduler
|
6 |
+
|
7 |
+
|
8 |
+
class BaseModel(nn.Module):
|
9 |
+
def __init__(self, opt):
|
10 |
+
super(BaseModel, self).__init__()
|
11 |
+
self.opt = opt
|
12 |
+
self.total_steps = 0
|
13 |
+
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
|
14 |
+
self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu')
|
15 |
+
if opt.gpu_ids:
|
16 |
+
self.device= torch.device('cuda:{}'.format(opt.gpu_ids[0]))
|
17 |
+
else:
|
18 |
+
print("gpu is not available! ")
|
19 |
+
# exit()
|
20 |
+
self.device = torch.device('cpu')
|
21 |
+
# self.device = torch.device('cuda')
|
22 |
+
|
23 |
+
def save_networks(self, save_filename):
|
24 |
+
save_path = os.path.join(self.save_dir, save_filename)
|
25 |
+
|
26 |
+
# serialize model and optimizer to dict
|
27 |
+
state_dict = {
|
28 |
+
'model': self.model.state_dict(),
|
29 |
+
'optimizer' : self.optimizer.state_dict(),
|
30 |
+
'total_steps' : self.total_steps,
|
31 |
+
}
|
32 |
+
|
33 |
+
torch.save(state_dict, save_path)
|
34 |
+
|
35 |
+
|
36 |
+
def eval(self):
|
37 |
+
self.model.eval()
|
38 |
+
|
39 |
+
def test(self):
|
40 |
+
with torch.no_grad():
|
41 |
+
self.forward()
|
networks/trainer.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from networks.base_model import BaseModel
|
5 |
+
import sys
|
6 |
+
from models import get_model
|
7 |
+
|
8 |
+
|
9 |
+
class Trainer(BaseModel):
|
10 |
+
def name(self):
|
11 |
+
return 'Trainer'
|
12 |
+
|
13 |
+
def __init__(self, opt):
|
14 |
+
super(Trainer, self).__init__(opt)
|
15 |
+
self.opt = opt
|
16 |
+
self.model = get_model("FeatureTransformer")
|
17 |
+
self.clip_model = get_model("CLIP:ViT-L/14")
|
18 |
+
# torch.nn.init.normal_(self.model.fc.weight.data, 0.0, opt.init_gain)
|
19 |
+
|
20 |
+
# if opt.fix_backbone:
|
21 |
+
params = []
|
22 |
+
for name, p in self.clip_model.named_parameters():
|
23 |
+
if name=="fc.weight" or name=="fc.bias":
|
24 |
+
params.append(p)
|
25 |
+
else:
|
26 |
+
p.requires_grad = False
|
27 |
+
del params
|
28 |
+
# else:
|
29 |
+
# print("Your backbone is not fixed. Are you sure you want to proceed? If this is a mistake, enable the --fix_backbone command during training and rerun")
|
30 |
+
# import time
|
31 |
+
# time.sleep(3)
|
32 |
+
# params = self.clip_model.parameters()
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
if opt.optim == 'adam':
|
37 |
+
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay)
|
38 |
+
elif opt.optim == 'sgd':
|
39 |
+
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=opt.lr, momentum=0.0, weight_decay=opt.weight_decay)
|
40 |
+
else:
|
41 |
+
raise ValueError("optim should be [adam, sgd]")
|
42 |
+
|
43 |
+
self.loss_fn = nn.BCEWithLogitsLoss()
|
44 |
+
|
45 |
+
self.model.to(self.device)
|
46 |
+
|
47 |
+
|
48 |
+
def adjust_learning_rate(self, min_lr=1e-6):
|
49 |
+
for param_group in self.optimizer.param_groups:
|
50 |
+
param_group['lr'] /= 10.
|
51 |
+
if param_group['lr'] < min_lr:
|
52 |
+
return False
|
53 |
+
return True
|
54 |
+
|
55 |
+
|
56 |
+
def set_input(self, input):
|
57 |
+
# self.input = torch.cat([self.clip_model.forward(x=video_frames, return_feature=True).unsqueeze(0) for video_frames in input[0]])
|
58 |
+
self.clip_model.to(self.device)
|
59 |
+
self.input = self.clip_model.forward(x=input[0].to(self.device).view(-1, 3, 224, 224), return_feature=True).view(-1, input[0].shape[1], 768)
|
60 |
+
self.clip_model.to('cpu')
|
61 |
+
self.input = self.input.to(self.device)
|
62 |
+
self.label = input[1].to(self.device).float()
|
63 |
+
|
64 |
+
|
65 |
+
def forward(self):
|
66 |
+
self.output = self.model(self.input)
|
67 |
+
self.output = self.output.view(-1).unsqueeze(1)
|
68 |
+
|
69 |
+
|
70 |
+
def get_loss(self):
|
71 |
+
return self.loss_fn(self.output.squeeze(1), self.label)
|
72 |
+
|
73 |
+
def optimize_parameters(self):
|
74 |
+
self.forward()
|
75 |
+
self.loss = self.loss_fn(self.output.squeeze(1), self.label)
|
76 |
+
self.optimizer.zero_grad()
|
77 |
+
self.loss.backward()
|
78 |
+
self.optimizer.step()
|
networks/validator.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import Mapping
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from networks.base_model import BaseModel
|
6 |
+
import sys
|
7 |
+
from models import get_model
|
8 |
+
|
9 |
+
|
10 |
+
class Validator(BaseModel):
|
11 |
+
def name(self):
|
12 |
+
return 'Validator'
|
13 |
+
|
14 |
+
def __init__(self, opt):
|
15 |
+
super(Validator, self).__init__(opt)
|
16 |
+
self.opt = opt
|
17 |
+
self.model = get_model("FeatureTransformer")
|
18 |
+
self.clip_model = get_model("CLIP:ViT-L/14")
|
19 |
+
|
20 |
+
# for name, p in self.clip_model.named_parameters():
|
21 |
+
# if name=="fc.weight" or name=="fc.bias":
|
22 |
+
# params.append(p)
|
23 |
+
# else:
|
24 |
+
# p.requires_grad = False
|
25 |
+
# del params
|
26 |
+
|
27 |
+
self.model.to(self.device)
|
28 |
+
|
29 |
+
|
30 |
+
def set_input(self, input):
|
31 |
+
# self.input = torch.cat([self.clip_model.forward(x=video_frames, return_feature=True).unsqueeze(0) for video_frames in input[0]])
|
32 |
+
self.clip_model.to(self.device)
|
33 |
+
self.input = self.clip_model.forward(x=input[0].to(self.device).view(-1, 3, 224, 224), return_feature=True).view(-1, 16, 768)
|
34 |
+
self.clip_model.to('cpu')
|
35 |
+
self.input = self.input.to(self.device)
|
36 |
+
self.label = input[1].to(self.device).float()
|
37 |
+
|
38 |
+
|
39 |
+
def forward(self):
|
40 |
+
self.output = self.model(self.input)
|
41 |
+
self.output = self.output.view(-1).unsqueeze(1)
|
42 |
+
|
43 |
+
def load_state_dict(self, ckpt_path):
|
44 |
+
state_dict = torch.load(ckpt_path, map_location='cpu')
|
45 |
+
self.model.load_state_dict(state_dict['model'])
|
46 |
+
self.model.eval()
|
options/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .train_options import TrainOptions
|
2 |
+
from .test_options import TestOptions
|
options/base_options.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
# import util
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class BaseOptions():
|
8 |
+
def __init__(self):
|
9 |
+
self.initialized = False
|
10 |
+
|
11 |
+
def initialize(self, parser):
|
12 |
+
parser.add_argument('--mode', default='binary')
|
13 |
+
|
14 |
+
# data augmentation
|
15 |
+
parser.add_argument('--rz_interp', default='bilinear')
|
16 |
+
parser.add_argument('--blur_prob', type=float, default=0.5)
|
17 |
+
parser.add_argument('--blur_sig', default='0.0,3.0')
|
18 |
+
parser.add_argument('--jpg_prob', type=float, default=0.5)
|
19 |
+
parser.add_argument('--jpg_method', default='cv2,pil')
|
20 |
+
parser.add_argument('--jpg_qual', default='30,100')
|
21 |
+
|
22 |
+
|
23 |
+
parser.add_argument('--data_label', default='train', help='label to decide whether train or validation dataset')
|
24 |
+
parser.add_argument('--weight_decay', type=float, default=0.0, help='loss weight for l2 reg')
|
25 |
+
|
26 |
+
parser.add_argument('--class_bal', action='store_true') # what is this ?
|
27 |
+
parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
|
28 |
+
|
29 |
+
parser.add_argument('--loadSize', type=int, default=256, help='scale images to this size')
|
30 |
+
parser.add_argument('--cropSize', type=int, default=224, help='then crop to this size')
|
31 |
+
parser.add_argument('--gpu_ids', type=str, default='-1', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
|
32 |
+
|
33 |
+
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
|
34 |
+
parser.add_argument('--name', type=str, default='experiment', help='name of the experiment. It decides where to store samples and models')
|
35 |
+
|
36 |
+
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
|
37 |
+
parser.add_argument('--resize_or_crop', type=str, default='scale_and_crop', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop|none]')
|
38 |
+
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
|
39 |
+
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal|xavier|kaiming|orthogonal]')
|
40 |
+
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
|
41 |
+
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{loadSize}')
|
42 |
+
self.initialized = True
|
43 |
+
return parser
|
44 |
+
|
45 |
+
def gather_options(self):
|
46 |
+
# initialize parser with basic options
|
47 |
+
if not self.initialized:
|
48 |
+
parser = argparse.ArgumentParser(
|
49 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
50 |
+
parser = self.initialize(parser)
|
51 |
+
|
52 |
+
# get the basic options
|
53 |
+
opt, _ = parser.parse_known_args()
|
54 |
+
self.parser = parser
|
55 |
+
|
56 |
+
return parser.parse_args()
|
57 |
+
|
58 |
+
def print_options(self, opt):
|
59 |
+
message = ''
|
60 |
+
message += '----------------- Options ---------------\n'
|
61 |
+
for k, v in sorted(vars(opt).items()):
|
62 |
+
comment = ''
|
63 |
+
default = self.parser.get_default(k)
|
64 |
+
if v != default:
|
65 |
+
comment = '\t[default: %s]' % str(default)
|
66 |
+
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
|
67 |
+
message += '----------------- End -------------------'
|
68 |
+
print(message)
|
69 |
+
|
70 |
+
# save to the disk
|
71 |
+
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
|
72 |
+
# util.mkdirs(expr_dir)
|
73 |
+
os.makedirs(expr_dir, exist_ok=True)
|
74 |
+
file_name = os.path.join(expr_dir, 'opt.txt')
|
75 |
+
with open(file_name, 'wt') as opt_file:
|
76 |
+
opt_file.write(message)
|
77 |
+
opt_file.write('\n')
|
78 |
+
|
79 |
+
def parse(self, print_options=True):
|
80 |
+
|
81 |
+
opt = self.gather_options()
|
82 |
+
opt.isTrain = self.isTrain # train or test
|
83 |
+
|
84 |
+
# process opt.suffix
|
85 |
+
if opt.suffix:
|
86 |
+
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
|
87 |
+
opt.name = opt.name + suffix
|
88 |
+
|
89 |
+
if print_options:
|
90 |
+
self.print_options(opt)
|
91 |
+
|
92 |
+
# set gpu ids
|
93 |
+
str_ids = opt.gpu_ids.split(',')
|
94 |
+
opt.gpu_ids = []
|
95 |
+
for str_id in str_ids:
|
96 |
+
id = int(str_id)
|
97 |
+
if id >= 0:
|
98 |
+
opt.gpu_ids.append(id)
|
99 |
+
if len(opt.gpu_ids) > 0:
|
100 |
+
torch.cuda.set_device(opt.gpu_ids[0])
|
101 |
+
|
102 |
+
# additional
|
103 |
+
#opt.classes = opt.classes.split(',')
|
104 |
+
opt.rz_interp = opt.rz_interp.split(',')
|
105 |
+
opt.blur_sig = [float(s) for s in opt.blur_sig.split(',')]
|
106 |
+
opt.jpg_method = opt.jpg_method.split(',')
|
107 |
+
opt.jpg_qual = [int(s) for s in opt.jpg_qual.split(',')]
|
108 |
+
if len(opt.jpg_qual) == 2:
|
109 |
+
opt.jpg_qual = list(range(opt.jpg_qual[0], opt.jpg_qual[1] + 1))
|
110 |
+
elif len(opt.jpg_qual) > 2:
|
111 |
+
raise ValueError("Shouldn't have more than 2 values for --jpg_qual.")
|
112 |
+
|
113 |
+
self.opt = opt
|
114 |
+
return self.opt
|
options/test_options.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_options import BaseOptions
|
2 |
+
|
3 |
+
|
4 |
+
class TestOptions(BaseOptions):
|
5 |
+
def initialize(self, parser):
|
6 |
+
parser = BaseOptions.initialize(self, parser)
|
7 |
+
parser.add_argument('--model_path')
|
8 |
+
parser.add_argument('--no_resize', action='store_true')
|
9 |
+
parser.add_argument('--no_crop', action='store_true')
|
10 |
+
parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
|
11 |
+
|
12 |
+
parser.add_argument('--real_list_path', default='/mnt/data2/group2024-lhj/t2v/data/test/true', help='path for the list of real video,')
|
13 |
+
parser.add_argument('--fake_list_path', default='/mnt/data2/group2024-lhj/t2v/data/test/fake', help='path for the list of fake video,')
|
14 |
+
|
15 |
+
parser.add_argument('--ckpt', type=str, default='./checkpoints/best_network.pth')
|
16 |
+
parser.add_argument('--output', type=str, default='./checkpoints/test')
|
17 |
+
|
18 |
+
self.isTrain = False
|
19 |
+
return parser
|
options/train_options.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_options import BaseOptions
|
2 |
+
|
3 |
+
|
4 |
+
class TrainOptions(BaseOptions):
|
5 |
+
def initialize(self, parser):
|
6 |
+
parser = BaseOptions.initialize(self, parser)
|
7 |
+
parser.add_argument('--earlystop_epoch', type=int, default=5)
|
8 |
+
parser.add_argument('--data_aug', action='store_true', help='if specified, perform additional data augmentation (photometric, blurring, jpegging)')
|
9 |
+
parser.add_argument('--optim', type=str, default='adam', help='optim to use [sgd, adam]')
|
10 |
+
parser.add_argument('--new_optim', action='store_true', help='new optimizer instead of loading the optim state')
|
11 |
+
parser.add_argument('--loss_freq', type=int, default=400, help='frequency of showing loss on tensorboard')
|
12 |
+
parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs')
|
13 |
+
parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...')
|
14 |
+
parser.add_argument('--last_epoch', type=int, default=-1, help='starting epoch count for scheduler intialization')
|
15 |
+
parser.add_argument('--train_split', type=str, default='train', help='train, val, test, etc')
|
16 |
+
parser.add_argument('--val_split', type=str, default='val', help='train, val, test, etc')
|
17 |
+
parser.add_argument('--niter', type=int, default=100, help='total epoches')
|
18 |
+
parser.add_argument('--beta1', type=float, default=0.9, help='momentum term of adam')
|
19 |
+
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate for adam')
|
20 |
+
|
21 |
+
parser.add_argument('--real_list_path', default='/mnt/data2/group2024-lhj/t2v/data/train/true', help='path for the list of real video')
|
22 |
+
parser.add_argument('--fake_list_path', default='/mnt/data2/group2024-lhj/t2v/data/train/fake', help='path for the list of fake video')
|
23 |
+
|
24 |
+
self.isTrain = True
|
25 |
+
return parser
|
requirements.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ftfy==6.2.0
|
2 |
+
gradio==4.32.2
|
3 |
+
numpy==1.23.5
|
4 |
+
opencv_python==4.8.0.76
|
5 |
+
Pillow==10.3.0
|
6 |
+
regex==2023.10.3
|
7 |
+
scikit_learn==1.3.2
|
8 |
+
scipy==1.13.1
|
9 |
+
setuptools==65.5.0
|
10 |
+
tensorboardX==2.6.2.2
|
11 |
+
termcolor==2.4.0
|
12 |
+
torch==2.1.0
|
13 |
+
torchinfo==1.8.0
|
14 |
+
torchvision==0.16.0
|
15 |
+
tqdm==4.66.1
|
16 |
+
PyAV==12.0.5
|
17 |
+
|
18 |
+
transformers==4.18.0
|
19 |
+
ipykernel==6.13.0
|
20 |
+
ipython==8.3.0
|
21 |
+
jieba==0.42.1
|
22 |
+
huggingface-hub==0.5.1
|
23 |
+
librosa==0.10.1
|
24 |
+
pandas==1.4.2
|
25 |
+
python3-openid==3.2.0
|
26 |
+
pytorch-lightning==1.6.2
|
27 |
+
pytorch-ranger==0.1.1
|
28 |
+
tensorboard-plugin-wit==1.8.1
|
29 |
+
torch-optimizer==0.3.0
|
30 |
+
torch-stoi==0.1.2
|
31 |
+
torchmetrics==0.8.1
|
32 |
+
timm==0.5.4
|
33 |
+
einops==0.8.0
|
34 |
+
h5py==3.11.0
|
35 |
+
moviepy==1.0.3
|
36 |
+
scikit-image==0.23.2
|
37 |
+
modelscope
|
38 |
+
modelscope[audio]
|
run.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import torchvision.transforms.functional as TF
|
5 |
+
from torchvision.io import read_video
|
6 |
+
import torch.utils.data
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
|
9 |
+
import pickle
|
10 |
+
from tqdm import tqdm
|
11 |
+
from datetime import datetime
|
12 |
+
from copy import deepcopy
|
13 |
+
from dataset_paths import DATASET_PATHS
|
14 |
+
import random
|
15 |
+
|
16 |
+
from datasetss import create_test_dataloader
|
17 |
+
from utilss.logger import create_logger
|
18 |
+
import options
|
19 |
+
from networks.validator import Validator
|
20 |
+
|
21 |
+
|
22 |
+
def get_model():
|
23 |
+
val_opt = options.TestOptions().parse(print_options=False)
|
24 |
+
output_dir=os.path.join(val_opt.output, val_opt.name)
|
25 |
+
os.makedirs(output_dir, exist_ok=True)
|
26 |
+
|
27 |
+
# logger = create_logger(output_dir=output_dir, name="FakeVideoDetector")
|
28 |
+
print(f"working...")
|
29 |
+
|
30 |
+
model = Validator(val_opt)
|
31 |
+
model.load_state_dict(val_opt.ckpt)
|
32 |
+
print("ckpt loaded!")
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
def detect_video(video_path, model):
|
37 |
+
frames, _, _ = read_video(str(video_path), pts_unit='sec')
|
38 |
+
frames = frames[:16]
|
39 |
+
frames = frames.permute(0, 3, 1, 2) # (T,H,W,C) -> (T,C,H,W)
|
40 |
+
|
41 |
+
video_frames = torch.cat([model.clip_model.preprocess(TF.to_pil_image(frame)).unsqueeze(0) for frame in frames])
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
model.set_input([torch.as_tensor(video_frames), torch.tensor([0])])
|
45 |
+
|
46 |
+
pred = model.model(model.input).view(-1).unsqueeze(1).sigmoid()
|
47 |
+
|
48 |
+
return pred[0].item()
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
video_path = '../../dataset/MSRVTT/videos/all/video1.mp4'
|
53 |
+
# val_opt = options.TestOptions().parse()
|
54 |
+
|
55 |
+
# output_dir=os.path.join(val_opt.output, val_opt.name)
|
56 |
+
# os.makedirs(output_dir, exist_ok=True)
|
57 |
+
# # logger = create_logger(output_dir=output_dir, name="FakeVideoDetector")
|
58 |
+
# print(f"working...")
|
59 |
+
|
60 |
+
# model = Validator(val_opt)
|
61 |
+
# model.load_state_dict(val_opt.ckpt)
|
62 |
+
# print("ckpt loaded!")
|
63 |
+
|
64 |
+
# # val_loader = create_test_dataloader(val_opt, clip_model = None, transform = model.clip_model.preprocess)
|
65 |
+
# frames, _, _ = read_video(str(video_path), pts_unit='sec')
|
66 |
+
# frames = frames[:16]
|
67 |
+
# frames = frames.permute(0, 3, 1, 2) # (T,H,W,C) -> (T,C,H,W)
|
68 |
+
|
69 |
+
|
70 |
+
# video_frames = torch.cat([model.clip_model.preprocess(TF.to_pil_image(frame)).unsqueeze(0) for frame in frames])
|
71 |
+
|
72 |
+
# with torch.no_grad():
|
73 |
+
# model.set_input([torch.as_tensor(video_frames), torch.tensor([0])])
|
74 |
+
|
75 |
+
# pred = model.model(model.input).view(-1).unsqueeze(1).sigmoid()
|
76 |
+
|
77 |
+
model = get_model()
|
78 |
+
|
79 |
+
pred = detect_video(video_path, model)
|
80 |
+
if pred > 0.5:
|
81 |
+
print(f"Fake: {pred*100:.2f}%")
|
82 |
+
else:
|
83 |
+
print(f"Real: {(1-pred)*100:.2f}%")
|
train.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
from datetime import datetime
|
4 |
+
from tqdm import tqdm
|
5 |
+
from tensorboardX import SummaryWriter
|
6 |
+
import torch
|
7 |
+
import torchinfo
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import options
|
11 |
+
from validate import validate, calculate_acc
|
12 |
+
from datasetss import *
|
13 |
+
from utilss.logger import create_logger
|
14 |
+
from utilss.earlystop import EarlyStopping
|
15 |
+
from networks.trainer import Trainer
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
train_opt = options.TrainOptions().parse()
|
21 |
+
# val_opt = options.TestOptions().parse()
|
22 |
+
|
23 |
+
# logger
|
24 |
+
logger = create_logger(output_dir=train_opt.checkpoints_dir, name="FeatureTransformer")
|
25 |
+
logger.info(f"working dir: {train_opt.checkpoints_dir}")
|
26 |
+
|
27 |
+
|
28 |
+
model = Trainer(train_opt)
|
29 |
+
# logger.info(opt.gpu_ids[0])
|
30 |
+
logger.info(model.device)
|
31 |
+
|
32 |
+
# extract_feature_model = model.extract_feature_model
|
33 |
+
train_loader, val_loader = create_train_val_dataloader(train_opt, clip_model = None, transform = model.clip_model.preprocess, k_split=0.8)
|
34 |
+
logger.info(f"train {len(train_loader)}")
|
35 |
+
logger.info(f"validate {len(val_loader)}")
|
36 |
+
|
37 |
+
|
38 |
+
train_writer = SummaryWriter(os.path.join(train_opt.checkpoints_dir, train_opt.name, "train"))
|
39 |
+
val_writer = SummaryWriter(os.path.join(train_opt.checkpoints_dir, train_opt.name, "val"))
|
40 |
+
|
41 |
+
early_stopping = EarlyStopping(save_path=train_opt.checkpoints_dir, patience=train_opt.earlystop_epoch, delta=-0.001, verbose=True)
|
42 |
+
|
43 |
+
start_time = time.time()
|
44 |
+
logger.info(torchinfo.summary(model.model, input_size=(train_opt.batch_size, 16, 768), col_width=20,
|
45 |
+
col_names=['input_size', 'output_size', 'num_params', 'trainable'], row_settings=['var_names'], verbose=0))
|
46 |
+
|
47 |
+
|
48 |
+
logger.info("Length of train loader: %d" %(len(train_loader)))
|
49 |
+
for epoch in range(train_opt.niter):
|
50 |
+
y_true, y_pred = [], []
|
51 |
+
pbar = tqdm(train_loader)
|
52 |
+
for i, data in enumerate(pbar):
|
53 |
+
pbar.set_description(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
54 |
+
|
55 |
+
model.total_steps += 1
|
56 |
+
|
57 |
+
model.set_input(data)
|
58 |
+
model.optimize_parameters()
|
59 |
+
|
60 |
+
y_pred.extend(model.output.sigmoid().flatten().tolist())
|
61 |
+
y_true.extend(data[1].flatten().tolist())
|
62 |
+
|
63 |
+
if model.total_steps % train_opt.loss_freq == 0:
|
64 |
+
logger.info("Train loss: {} at step: {}".format(model.loss, model.total_steps))
|
65 |
+
train_writer.add_scalar('loss', model.loss, model.total_steps)
|
66 |
+
logger.info("Iter time: {}".format((time.time()-start_time)/model.total_steps) )
|
67 |
+
|
68 |
+
if model.total_steps in [10,30,50,100,1000,5000,10000] and False: # save models at these iters
|
69 |
+
model.save_networks('model_iters_%s.pth' % model.total_steps)
|
70 |
+
# logger.info("trained one batch")
|
71 |
+
pbar.set_postfix_str(f"loss: {model.loss}, ")
|
72 |
+
r_acc0, f_acc0, acc0 = calculate_acc(np.array(y_true), np.array(y_pred), 0.5)
|
73 |
+
logger.info(f"TrainSet r_acc: {r_acc0}, f_acc: {f_acc0}, acc: {acc0}")
|
74 |
+
|
75 |
+
if epoch % train_opt.save_epoch_freq == 0:
|
76 |
+
logger.info('saving the model at the end of epoch %d' % (epoch))
|
77 |
+
model.save_networks( 'model_epoch_%s.pth' % epoch )
|
78 |
+
|
79 |
+
# Validation
|
80 |
+
model.eval()
|
81 |
+
ap, r_acc, f_acc, acc = validate(model, val_loader, logger=logger)
|
82 |
+
val_writer.add_scalar('accuracy', acc, model.total_steps)
|
83 |
+
val_writer.add_scalar('ap', ap, model.total_steps)
|
84 |
+
logger.info("(Val @ epoch {}) acc: {}; ap: {}".format(epoch, acc, ap))
|
85 |
+
|
86 |
+
early_stopping(acc, model.model)
|
87 |
+
if early_stopping.early_stop:
|
88 |
+
cont_train = model.adjust_learning_rate()
|
89 |
+
if cont_train:
|
90 |
+
logger.info("Learning rate dropped by 10, continue training...")
|
91 |
+
early_stopping = EarlyStopping(save_path=train_opt.checkpoints_dir, patience=train_opt.earlystop_epoch, delta=-0.002, verbose=True)
|
92 |
+
else:
|
93 |
+
logger.info("Early stopping.")
|
94 |
+
break
|
95 |
+
|
96 |
+
model.train()
|
97 |
+
|
utilss/earlystop.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
class EarlyStopping:
|
6 |
+
"""Early stops the training if validation loss doesn't improve after a given patience."""
|
7 |
+
def __init__(self, save_path, patience=7, verbose=False, delta=0):
|
8 |
+
"""
|
9 |
+
Args:
|
10 |
+
save_path : 模型保存文件夹
|
11 |
+
patience (int): How long to wait after last time validation loss improved.
|
12 |
+
Default: 7
|
13 |
+
verbose (bool): If True, prints a message for each validation loss improvement.
|
14 |
+
Default: False
|
15 |
+
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
|
16 |
+
Default: 0
|
17 |
+
"""
|
18 |
+
self.save_path = save_path
|
19 |
+
self.patience = patience
|
20 |
+
self.verbose = verbose
|
21 |
+
self.counter = 0
|
22 |
+
self.best_score = None
|
23 |
+
self.early_stop = False
|
24 |
+
self.val_loss_min = np.Inf
|
25 |
+
self.delta = delta
|
26 |
+
|
27 |
+
def __call__(self, val_loss, model):
|
28 |
+
|
29 |
+
score = -val_loss
|
30 |
+
|
31 |
+
if self.best_score is None:
|
32 |
+
self.best_score = score
|
33 |
+
self.save_checkpoint(val_loss, model)
|
34 |
+
elif score < self.best_score + self.delta:
|
35 |
+
self.counter += 1
|
36 |
+
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
37 |
+
if self.counter >= self.patience:
|
38 |
+
self.early_stop = True
|
39 |
+
else:
|
40 |
+
self.best_score = score
|
41 |
+
self.save_checkpoint(val_loss, model)
|
42 |
+
self.counter = 0
|
43 |
+
|
44 |
+
def save_checkpoint(self, val_loss, model):
|
45 |
+
'''Saves model when validation loss decrease.'''
|
46 |
+
if self.verbose:
|
47 |
+
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ... best_network.pth ...')
|
48 |
+
path = os.path.join(self.save_path, 'best_network.pth')
|
49 |
+
# torch.save(model.state_dict(), path) # 这里会存储迄今最优模型的参数
|
50 |
+
self.save_networks(path, model)
|
51 |
+
self.val_loss_min = val_loss
|
52 |
+
|
53 |
+
def save_networks(self, save_path, model):
|
54 |
+
|
55 |
+
# serialize model and optimizer to dict
|
56 |
+
state_dict = {
|
57 |
+
'model': model.state_dict(),
|
58 |
+
}
|
59 |
+
|
60 |
+
torch.save(state_dict, save_path)
|
utilss/logger.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import logging
|
4 |
+
import functools
|
5 |
+
from termcolor import colored
|
6 |
+
|
7 |
+
|
8 |
+
@functools.lru_cache()
|
9 |
+
def create_logger(output_dir, dist_rank=0, name=''):
|
10 |
+
# create logger
|
11 |
+
logger = logging.getLogger(name)
|
12 |
+
logger.setLevel(logging.DEBUG)
|
13 |
+
logger.propagate = False
|
14 |
+
|
15 |
+
# create formatter
|
16 |
+
fmt = '[%(asctime)s %(name)s] (%(filename)s %(lineno)d): %(levelname)s %(message)s'
|
17 |
+
color_fmt = colored('[%(asctime)s %(name)s]', 'green') + \
|
18 |
+
colored('(%(filename)s %(lineno)d)', 'yellow') + ': %(levelname)s %(message)s'
|
19 |
+
|
20 |
+
# create console handlers for master process
|
21 |
+
if dist_rank == 0:
|
22 |
+
console_handler = logging.StreamHandler(sys.stdout)
|
23 |
+
console_handler.setLevel(logging.DEBUG)
|
24 |
+
console_handler.setFormatter(
|
25 |
+
logging.Formatter(fmt=color_fmt, datefmt='%Y-%m-%d %H:%M:%S'))
|
26 |
+
logger.addHandler(console_handler)
|
27 |
+
|
28 |
+
# create file handlers
|
29 |
+
file_handler = logging.FileHandler(os.path.join(output_dir, f'log_rank{dist_rank}.txt'), mode='a')
|
30 |
+
file_handler.setLevel(logging.DEBUG)
|
31 |
+
file_handler.setFormatter(logging.Formatter(fmt=fmt, datefmt='%Y-%m-%d %H:%M:%S'))
|
32 |
+
logger.addHandler(file_handler)
|
33 |
+
|
34 |
+
return logger
|
validate.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
import torch.utils.data
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
|
7 |
+
import pickle
|
8 |
+
from tqdm import tqdm
|
9 |
+
from datetime import datetime
|
10 |
+
from copy import deepcopy
|
11 |
+
from dataset_paths import DATASET_PATHS
|
12 |
+
import random
|
13 |
+
|
14 |
+
from datasetss import create_test_dataloader
|
15 |
+
from utilss.logger import create_logger
|
16 |
+
import options
|
17 |
+
from networks.validator import Validator
|
18 |
+
|
19 |
+
|
20 |
+
SEED = 0
|
21 |
+
def set_seed():
|
22 |
+
torch.manual_seed(SEED)
|
23 |
+
torch.cuda.manual_seed(SEED)
|
24 |
+
np.random.seed(SEED)
|
25 |
+
random.seed(SEED)
|
26 |
+
|
27 |
+
|
28 |
+
MEAN = {
|
29 |
+
"imagenet":[0.485, 0.456, 0.406],
|
30 |
+
"clip":[0.48145466, 0.4578275, 0.40821073]
|
31 |
+
}
|
32 |
+
|
33 |
+
STD = {
|
34 |
+
"imagenet":[0.229, 0.224, 0.225],
|
35 |
+
"clip":[0.26862954, 0.26130258, 0.27577711]
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def find_best_threshold(y_true, y_pred):
|
41 |
+
"We assume first half is real 0, and the second half is fake 1"
|
42 |
+
|
43 |
+
N = y_true.shape[0]
|
44 |
+
|
45 |
+
if y_pred[0:N//2].max() <= y_pred[N//2:N].min(): # perfectly separable case
|
46 |
+
return (y_pred[0:N//2].max() + y_pred[N//2:N].min()) / 2
|
47 |
+
|
48 |
+
best_acc = 0
|
49 |
+
best_thres = 0
|
50 |
+
for thres in y_pred:
|
51 |
+
temp = deepcopy(y_pred)
|
52 |
+
temp[temp>=thres] = 1
|
53 |
+
temp[temp<thres] = 0
|
54 |
+
|
55 |
+
acc = (temp == y_true).sum() / N
|
56 |
+
if acc >= best_acc:
|
57 |
+
best_thres = thres
|
58 |
+
best_acc = acc
|
59 |
+
|
60 |
+
return best_thres
|
61 |
+
|
62 |
+
|
63 |
+
def calculate_acc(y_true, y_pred, thres):
|
64 |
+
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > thres)
|
65 |
+
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > thres)
|
66 |
+
acc = accuracy_score(y_true, y_pred > thres)
|
67 |
+
return r_acc, f_acc, acc
|
68 |
+
|
69 |
+
|
70 |
+
def validate(model, loader, logger, find_thres=False):
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
y_true, y_pred = [], []
|
74 |
+
logger.info ("Length of dataset: %d" %(len(loader)))
|
75 |
+
pbar = tqdm(loader)
|
76 |
+
for data in pbar:
|
77 |
+
pbar.set_description(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
|
78 |
+
model.set_input(data)
|
79 |
+
|
80 |
+
y_pred.extend(model.model(model.input).view(-1).unsqueeze(1).sigmoid().flatten().tolist())
|
81 |
+
y_true.extend(data[1].flatten().tolist())
|
82 |
+
|
83 |
+
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
84 |
+
|
85 |
+
# ================== save this if you want to plot the curves =========== #
|
86 |
+
# torch.save( torch.stack( [torch.tensor(y_true), torch.tensor(y_pred)] ), 'baseline_predication_for_pr_roc_curve.pth' )
|
87 |
+
# exit()
|
88 |
+
# =================================================================== #
|
89 |
+
# print(y_pred, '\n', y_true)
|
90 |
+
# Get AP
|
91 |
+
ap = average_precision_score(y_true, y_pred)
|
92 |
+
|
93 |
+
# Acc based on 0.5
|
94 |
+
r_acc0, f_acc0, acc0 = calculate_acc(y_true, y_pred, 0.5)
|
95 |
+
if not find_thres:
|
96 |
+
return ap, r_acc0, f_acc0, acc0
|
97 |
+
|
98 |
+
|
99 |
+
# Acc based on the best thres
|
100 |
+
best_thres = find_best_threshold(y_true, y_pred)
|
101 |
+
r_acc1, f_acc1, acc1 = calculate_acc(y_true, y_pred, best_thres)
|
102 |
+
|
103 |
+
return ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
|
108 |
+
|
109 |
+
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg", "bmp"]):
|
110 |
+
out = []
|
111 |
+
for r, d, f in os.walk(rootdir):
|
112 |
+
for file in f:
|
113 |
+
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
|
114 |
+
out.append(os.path.join(r, file))
|
115 |
+
return out
|
116 |
+
|
117 |
+
|
118 |
+
def get_list(path, must_contain=''):
|
119 |
+
if ".pickle" in path:
|
120 |
+
with open(path, 'rb') as f:
|
121 |
+
image_list = pickle.load(f)
|
122 |
+
image_list = [ item for item in image_list if must_contain in item ]
|
123 |
+
else:
|
124 |
+
image_list = recursively_read(path, must_contain)
|
125 |
+
return image_list
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == '__main__':
|
130 |
+
val_opt = options.TestOptions().parse()
|
131 |
+
|
132 |
+
output_dir=os.path.join(val_opt.output, val_opt.name)
|
133 |
+
os.makedirs(output_dir, exist_ok=True)
|
134 |
+
logger = create_logger(output_dir=output_dir, name="FakeVideoDetector")
|
135 |
+
logger.info(f"working dir: {output_dir}")
|
136 |
+
|
137 |
+
model = Validator(val_opt)
|
138 |
+
model.load_state_dict(val_opt.ckpt)
|
139 |
+
logger.info("ckpt loaded!")
|
140 |
+
|
141 |
+
val_loader = create_test_dataloader(val_opt, clip_model = None, transform = model.clip_model.preprocess)
|
142 |
+
|
143 |
+
|
144 |
+
ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres = validate(model, val_loader, logger, find_thres=True, )
|
145 |
+
|
146 |
+
print(f"ap: {ap}, r_acc0: {r_acc0}, f_acc0: {f_acc0}, acc0:{acc0}, r_acc1: {r_acc1}, f_acc1: {f_acc1}, acc1: {acc1}, best_thres: {best_thres} ")
|
147 |
+
|
148 |
+
with open( os.path.join(val_opt.name,'ap.txt'), 'a') as f:
|
149 |
+
f.write(str(round(ap*100, 2))+'\n' )
|
150 |
+
|
151 |
+
with open( os.path.join(val_opt.name,'acc0.txt'), 'a') as f:
|
152 |
+
f.write(str(round(r_acc0*100, 2))+' '+str(round(f_acc0*100, 2))+' '+str(round(acc0*100, 2))+'\n' )
|
153 |
+
|