File size: 3,423 Bytes
e8e478e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn as nn
from typing import Union, List, Dict, Any, cast
import torchvision
import torch.nn.functional as F





class VGG(torch.nn.Module):
    def __init__(self, arch_type, pretrained, progress):
        super().__init__()
        
        self.layer1 = torch.nn.Sequential()
        self.layer2 = torch.nn.Sequential()
        self.layer3 = torch.nn.Sequential()
        self.layer4 = torch.nn.Sequential()
        self.layer5 = torch.nn.Sequential()

        if arch_type == 'vgg11':
            official_vgg = torchvision.models.vgg11(pretrained=pretrained, progress=progress)
            blocks = [  [0,2], [2,5], [5,10], [10,15], [15,20] ]
            last_idx = 20
        elif arch_type == 'vgg19':
            official_vgg = torchvision.models.vgg19(pretrained=pretrained, progress=progress)
            blocks = [  [0,4], [4,9], [9,18], [18,27], [27,36] ]
            last_idx = 36
        else:
            raise NotImplementedError
        
        
        for x in range( *blocks[0] ):
            self.layer1.add_module(str(x), official_vgg.features[x])
        for x in range( *blocks[1] ):
            self.layer2.add_module(str(x), official_vgg.features[x])
        for x in range( *blocks[2] ):
            self.layer3.add_module(str(x), official_vgg.features[x])
        for x in range( *blocks[3] ):
            self.layer4.add_module(str(x), official_vgg.features[x])
        for x in range( *blocks[4] ):
            self.layer5.add_module(str(x), official_vgg.features[x])
            
        self.max_pool = official_vgg.features[last_idx]
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        
        self.fc1 = official_vgg.classifier[0]
        self.fc2 = official_vgg.classifier[3]
        self.fc3 = official_vgg.classifier[6]
        self.dropout = nn.Dropout()
        
        
    def forward(self, x):
        out = {}
        
        x = self.layer1(x)
        out['f0'] = x
        
        x = self.layer2(x)
        out['f1'] = x
        
        x = self.layer3(x)
        out['f2'] = x
        
        x = self.layer4(x)
        out['f3'] = x
        
        x = self.layer5(x)
        out['f4'] = x
        
        x = self.max_pool(x)
        x = self.avgpool(x)
        x = x.view(-1,512*7*7) 
        
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout(x) 
        x = self.fc2(x)
        x = F.relu(x)
        out['penultimate'] = x 
        x = self.dropout(x) 
        x = self.fc3(x)
        out['logits'] = x 

        return out










def vgg11(pretrained=False, progress=True):
    r"""VGG 11-layer model (configuration "A") from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return VGG('vgg11', pretrained, progress)



def vgg19(pretrained=False, progress=True):
    r"""VGG 19-layer model (configuration "E")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return VGG('vgg19', pretrained, progress)